Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377695719> ?p ?o ?g. }
- W4377695719 endingPage "103671" @default.
- W4377695719 startingPage "103671" @default.
- W4377695719 abstract "High-speed rails have strategic significance for political and economic development. As a critical part of the power supply system, overhead catenary systems (OCSs) power high-speed rails. OCSs are easily damaged due to artificial and natural factors. To ensure that OCSs work properly, researchers often use light detection and ranging (LiDAR) to recognize and inspect OCS components. However, recent OCS recognition methods relying on LiDAR need to enhance the ability to extract local features, integrate contextual features, and enhance crucial features while maintaining less latency and model complexity. To accomplish this objective, we proposed an accelerated point cloud segmentation algorithm for OCS recognition. The algorithm extracted local point cloud features based on machine learning methods. Then, it integrated the contextual features of point clouds using dot and accumulation operations. Additionally, we captured vital features and neglected unimportant features by constructing a feature enhancement algorithm. We accelerated the proposed algorithms by eliminating the run-time overhead of GPU scheduling. Experiments showed that our method had high precision with low model complexity and latency. For example, our precision was at least 0.64% better than comparison studies in recognizing steady arms. Our parameters were at least 43.59% fewer than others. Our optimized algorithm achieved a 2.47, 2.81, 3.24, 1.54, 7.12, and 7× speedup on the Nano, Tesla T4, RTX 2080 Ti, TX2, Tesla V100S GPU, and TITAN V, respectively. Our visualization effect also outperformed other methods in OCS recognition of high-speed rail scenarios." @default.
- W4377695719 created "2023-05-24" @default.
- W4377695719 creator A5000537525 @default.
- W4377695719 creator A5019444969 @default.
- W4377695719 creator A5036091000 @default.
- W4377695719 creator A5065895741 @default.
- W4377695719 creator A5081253987 @default.
- W4377695719 date "2023-07-01" @default.
- W4377695719 modified "2023-10-16" @default.
- W4377695719 title "Point cloud segmentation of overhead contact systems with deep learning in high-speed rails" @default.
- W4377695719 cites W2063251313 @default.
- W4377695719 cites W2145395493 @default.
- W4377695719 cites W2527188656 @default.
- W4377695719 cites W2885188677 @default.
- W4377695719 cites W2899280016 @default.
- W4377695719 cites W2907127092 @default.
- W4377695719 cites W2921725755 @default.
- W4377695719 cites W2963498470 @default.
- W4377695719 cites W3016855317 @default.
- W4377695719 cites W3017088349 @default.
- W4377695719 cites W3021631187 @default.
- W4377695719 cites W3035680081 @default.
- W4377695719 cites W3082740509 @default.
- W4377695719 cites W3094897602 @default.
- W4377695719 cites W3098110679 @default.
- W4377695719 cites W3116675231 @default.
- W4377695719 cites W3119125170 @default.
- W4377695719 cites W3128555787 @default.
- W4377695719 cites W3131980890 @default.
- W4377695719 cites W3159817459 @default.
- W4377695719 cites W3185177793 @default.
- W4377695719 cites W3206624955 @default.
- W4377695719 cites W3207348653 @default.
- W4377695719 cites W4206289472 @default.
- W4377695719 cites W4282587936 @default.
- W4377695719 cites W4296106218 @default.
- W4377695719 cites W639708223 @default.
- W4377695719 doi "https://doi.org/10.1016/j.jnca.2023.103671" @default.
- W4377695719 hasPublicationYear "2023" @default.
- W4377695719 type Work @default.
- W4377695719 citedByCount "0" @default.
- W4377695719 crossrefType "journal-article" @default.
- W4377695719 hasAuthorship W4377695719A5000537525 @default.
- W4377695719 hasAuthorship W4377695719A5019444969 @default.
- W4377695719 hasAuthorship W4377695719A5036091000 @default.
- W4377695719 hasAuthorship W4377695719A5065895741 @default.
- W4377695719 hasAuthorship W4377695719A5081253987 @default.
- W4377695719 hasConcept C111919701 @default.
- W4377695719 hasConcept C11413529 @default.
- W4377695719 hasConcept C115051666 @default.
- W4377695719 hasConcept C127313418 @default.
- W4377695719 hasConcept C131979681 @default.
- W4377695719 hasConcept C154945302 @default.
- W4377695719 hasConcept C162324750 @default.
- W4377695719 hasConcept C173608175 @default.
- W4377695719 hasConcept C206729178 @default.
- W4377695719 hasConcept C21547014 @default.
- W4377695719 hasConcept C2779960059 @default.
- W4377695719 hasConcept C41008148 @default.
- W4377695719 hasConcept C51399673 @default.
- W4377695719 hasConcept C62649853 @default.
- W4377695719 hasConcept C68339613 @default.
- W4377695719 hasConcept C76155785 @default.
- W4377695719 hasConcept C79403827 @default.
- W4377695719 hasConcept C79974875 @default.
- W4377695719 hasConcept C82876162 @default.
- W4377695719 hasConcept C89600930 @default.
- W4377695719 hasConceptScore W4377695719C111919701 @default.
- W4377695719 hasConceptScore W4377695719C11413529 @default.
- W4377695719 hasConceptScore W4377695719C115051666 @default.
- W4377695719 hasConceptScore W4377695719C127313418 @default.
- W4377695719 hasConceptScore W4377695719C131979681 @default.
- W4377695719 hasConceptScore W4377695719C154945302 @default.
- W4377695719 hasConceptScore W4377695719C162324750 @default.
- W4377695719 hasConceptScore W4377695719C173608175 @default.
- W4377695719 hasConceptScore W4377695719C206729178 @default.
- W4377695719 hasConceptScore W4377695719C21547014 @default.
- W4377695719 hasConceptScore W4377695719C2779960059 @default.
- W4377695719 hasConceptScore W4377695719C41008148 @default.
- W4377695719 hasConceptScore W4377695719C51399673 @default.
- W4377695719 hasConceptScore W4377695719C62649853 @default.
- W4377695719 hasConceptScore W4377695719C68339613 @default.
- W4377695719 hasConceptScore W4377695719C76155785 @default.
- W4377695719 hasConceptScore W4377695719C79403827 @default.
- W4377695719 hasConceptScore W4377695719C79974875 @default.
- W4377695719 hasConceptScore W4377695719C82876162 @default.
- W4377695719 hasConceptScore W4377695719C89600930 @default.
- W4377695719 hasLocation W43776957191 @default.
- W4377695719 hasOpenAccess W4377695719 @default.
- W4377695719 hasPrimaryLocation W43776957191 @default.
- W4377695719 hasRelatedWork W2035468110 @default.
- W4377695719 hasRelatedWork W2141477186 @default.
- W4377695719 hasRelatedWork W2739701376 @default.
- W4377695719 hasRelatedWork W2903786413 @default.
- W4377695719 hasRelatedWork W3203131932 @default.
- W4377695719 hasRelatedWork W3215077027 @default.
- W4377695719 hasRelatedWork W4283814361 @default.
- W4377695719 hasRelatedWork W4313048795 @default.