Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377698206> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4377698206 abstract "Unmanned aerial vehicle (UAV) applications can be powerful tools in horticultural research. However, they have not yet been widely explored in the literature. One significant area of interest for the horticultural community is identifying invasive plant species that, if left unchecked, can hinder the growth and health of native plant species. To address this issue, we assembled a novel data set of invasive and native plant species for seven southern states in the United States and developed a plant classification technique using pre-trained convolution neural networks and transfer learning. We explored extracting features from our data set using several state-of-the-art deep convolution neural network models, including InceptionV 3, MobileNetV 2, ResNetV 2, VGG16, and Xception. We then used the extracted features to classify the plant species using a convolutional neural network with cross-validation. Our experiments demonstrated the potential of our proposed method for achieving performance with a 94% accuracy using the MobileNetV2-DCNN model with data augmentation, hyper-parameter optimization, and the softmax classification technique. The advantage of our approach is the learning process is automated and highly accurate. The data set to train the plant species classifier will be available on request." @default.
- W4377698206 created "2023-05-24" @default.
- W4377698206 creator A5027994727 @default.
- W4377698206 creator A5037524688 @default.
- W4377698206 date "2023-04-19" @default.
- W4377698206 modified "2023-10-17" @default.
- W4377698206 title "A UAV and Deep Transfer Learning Based Environmental Monitoring: Application to Native and Invasive Species classification in Southern regions of the USA" @default.
- W4377698206 cites W2524275922 @default.
- W4377698206 cites W2560272190 @default.
- W4377698206 cites W2751262706 @default.
- W4377698206 cites W2751282688 @default.
- W4377698206 cites W2768991702 @default.
- W4377698206 cites W2770456481 @default.
- W4377698206 cites W2781910890 @default.
- W4377698206 cites W2898121939 @default.
- W4377698206 cites W2904111269 @default.
- W4377698206 cites W2914201981 @default.
- W4377698206 cites W2939104056 @default.
- W4377698206 cites W2946925582 @default.
- W4377698206 cites W2949060638 @default.
- W4377698206 cites W2966827389 @default.
- W4377698206 cites W3113351803 @default.
- W4377698206 cites W3157243572 @default.
- W4377698206 cites W3163337304 @default.
- W4377698206 cites W3165788119 @default.
- W4377698206 cites W3193607149 @default.
- W4377698206 cites W4293059266 @default.
- W4377698206 cites W4315491834 @default.
- W4377698206 doi "https://doi.org/10.1109/sustech57309.2023.10129545" @default.
- W4377698206 hasPublicationYear "2023" @default.
- W4377698206 type Work @default.
- W4377698206 citedByCount "0" @default.
- W4377698206 crossrefType "proceedings-article" @default.
- W4377698206 hasAuthorship W4377698206A5027994727 @default.
- W4377698206 hasAuthorship W4377698206A5037524688 @default.
- W4377698206 hasConcept C108583219 @default.
- W4377698206 hasConcept C119857082 @default.
- W4377698206 hasConcept C150899416 @default.
- W4377698206 hasConcept C153180895 @default.
- W4377698206 hasConcept C154945302 @default.
- W4377698206 hasConcept C188441871 @default.
- W4377698206 hasConcept C41008148 @default.
- W4377698206 hasConcept C45347329 @default.
- W4377698206 hasConcept C50644808 @default.
- W4377698206 hasConcept C58489278 @default.
- W4377698206 hasConcept C81363708 @default.
- W4377698206 hasConcept C95623464 @default.
- W4377698206 hasConceptScore W4377698206C108583219 @default.
- W4377698206 hasConceptScore W4377698206C119857082 @default.
- W4377698206 hasConceptScore W4377698206C150899416 @default.
- W4377698206 hasConceptScore W4377698206C153180895 @default.
- W4377698206 hasConceptScore W4377698206C154945302 @default.
- W4377698206 hasConceptScore W4377698206C188441871 @default.
- W4377698206 hasConceptScore W4377698206C41008148 @default.
- W4377698206 hasConceptScore W4377698206C45347329 @default.
- W4377698206 hasConceptScore W4377698206C50644808 @default.
- W4377698206 hasConceptScore W4377698206C58489278 @default.
- W4377698206 hasConceptScore W4377698206C81363708 @default.
- W4377698206 hasConceptScore W4377698206C95623464 @default.
- W4377698206 hasLocation W43776982061 @default.
- W4377698206 hasOpenAccess W4377698206 @default.
- W4377698206 hasPrimaryLocation W43776982061 @default.
- W4377698206 hasRelatedWork W2738221750 @default.
- W4377698206 hasRelatedWork W2758063741 @default.
- W4377698206 hasRelatedWork W2977314777 @default.
- W4377698206 hasRelatedWork W2997155179 @default.
- W4377698206 hasRelatedWork W3016514588 @default.
- W4377698206 hasRelatedWork W3165266428 @default.
- W4377698206 hasRelatedWork W3192840557 @default.
- W4377698206 hasRelatedWork W4288084884 @default.
- W4377698206 hasRelatedWork W4366224123 @default.
- W4377698206 hasRelatedWork W564581980 @default.
- W4377698206 isParatext "false" @default.
- W4377698206 isRetracted "false" @default.
- W4377698206 workType "article" @default.