Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377698833> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4377698833 abstract "Due to the environmental impacts caused by the construction industry, repurposing existing buildings and making them more energy-efficient has become a high-priority issue. However, a legitimate concern of land developers is associated with the buildings’ state of conservation. For that reason, infrared thermography has become a powerful tool to characterize these buildings’ state of conservation by detecting pathologies, such as cracks and humidity. Thermal cameras detect the radiation emitted by any material and translate it into temperature-color-coded images. Abnormal temperature changes may indicate the presence of pathologies, however, reading thermal images might not be quite simple. This research project aims to combine infrared thermography and machine learning (ML) to help stakeholders determine the viability of reusing existing buildings by identifying their pathologies and defects more efficiently and accurately. In this phase of the research project, it was used an image classification machine learning model of Convolutional Neural Networks (DCNN) to differentiate three levels of cracks in buildings. The model’s accuracy was compared between Multi-Spectral Dynamic (MSX) images, conventional and thermal images, all acquired from two distinct thermal cameras. Fused images (formed through multisource information) were also used, so the influence of the input data and network on the detection results were analyzed." @default.
- W4377698833 created "2023-05-24" @default.
- W4377698833 creator A5031015148 @default.
- W4377698833 creator A5057307036 @default.
- W4377698833 creator A5078723820 @default.
- W4377698833 creator A5084708345 @default.
- W4377698833 date "2023-04-19" @default.
- W4377698833 modified "2023-09-27" @default.
- W4377698833 title "Machine Learning and Thermography Applied to the Detection and Classification of Cracks in Buildings" @default.
- W4377698833 cites W2044951665 @default.
- W4377698833 cites W2757455114 @default.
- W4377698833 cites W2891805477 @default.
- W4377698833 cites W2919115771 @default.
- W4377698833 cites W3101287485 @default.
- W4377698833 cites W3124769650 @default.
- W4377698833 cites W3209687782 @default.
- W4377698833 cites W4200535558 @default.
- W4377698833 doi "https://doi.org/10.1109/sustech57309.2023.10129614" @default.
- W4377698833 hasPublicationYear "2023" @default.
- W4377698833 type Work @default.
- W4377698833 citedByCount "0" @default.
- W4377698833 crossrefType "proceedings-article" @default.
- W4377698833 hasAuthorship W4377698833A5031015148 @default.
- W4377698833 hasAuthorship W4377698833A5057307036 @default.
- W4377698833 hasAuthorship W4377698833A5078723820 @default.
- W4377698833 hasAuthorship W4377698833A5084708345 @default.
- W4377698833 hasConcept C119857082 @default.
- W4377698833 hasConcept C120665830 @default.
- W4377698833 hasConcept C121332964 @default.
- W4377698833 hasConcept C127313418 @default.
- W4377698833 hasConcept C127413603 @default.
- W4377698833 hasConcept C154945302 @default.
- W4377698833 hasConcept C158355884 @default.
- W4377698833 hasConcept C206588197 @default.
- W4377698833 hasConcept C2779222261 @default.
- W4377698833 hasConcept C31972630 @default.
- W4377698833 hasConcept C39432304 @default.
- W4377698833 hasConcept C41008148 @default.
- W4377698833 hasConcept C519536355 @default.
- W4377698833 hasConcept C548081761 @default.
- W4377698833 hasConcept C62649853 @default.
- W4377698833 hasConcept C81363708 @default.
- W4377698833 hasConceptScore W4377698833C119857082 @default.
- W4377698833 hasConceptScore W4377698833C120665830 @default.
- W4377698833 hasConceptScore W4377698833C121332964 @default.
- W4377698833 hasConceptScore W4377698833C127313418 @default.
- W4377698833 hasConceptScore W4377698833C127413603 @default.
- W4377698833 hasConceptScore W4377698833C154945302 @default.
- W4377698833 hasConceptScore W4377698833C158355884 @default.
- W4377698833 hasConceptScore W4377698833C206588197 @default.
- W4377698833 hasConceptScore W4377698833C2779222261 @default.
- W4377698833 hasConceptScore W4377698833C31972630 @default.
- W4377698833 hasConceptScore W4377698833C39432304 @default.
- W4377698833 hasConceptScore W4377698833C41008148 @default.
- W4377698833 hasConceptScore W4377698833C519536355 @default.
- W4377698833 hasConceptScore W4377698833C548081761 @default.
- W4377698833 hasConceptScore W4377698833C62649853 @default.
- W4377698833 hasConceptScore W4377698833C81363708 @default.
- W4377698833 hasFunder F4320312874 @default.
- W4377698833 hasLocation W43776988331 @default.
- W4377698833 hasOpenAccess W4377698833 @default.
- W4377698833 hasPrimaryLocation W43776988331 @default.
- W4377698833 hasRelatedWork W2318107073 @default.
- W4377698833 hasRelatedWork W2337926734 @default.
- W4377698833 hasRelatedWork W2978290780 @default.
- W4377698833 hasRelatedWork W3027997911 @default.
- W4377698833 hasRelatedWork W4287776258 @default.
- W4377698833 hasRelatedWork W4308353688 @default.
- W4377698833 hasRelatedWork W4312501200 @default.
- W4377698833 hasRelatedWork W4313050734 @default.
- W4377698833 hasRelatedWork W4320802194 @default.
- W4377698833 hasRelatedWork W4366224123 @default.
- W4377698833 isParatext "false" @default.
- W4377698833 isRetracted "false" @default.
- W4377698833 workType "article" @default.