Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377699610> ?p ?o ?g. }
- W4377699610 abstract "Electricity theft is one of the biggest problems for smart grids. As a result of the reliance of current procedures on certain equipment, it cannot be easily detected. Additionally, the techniques don’t effectively extract useful information from highly dimensional power usage data, which raises the incidence of false positives and restricts their output. This paper intend to design and develop a machine learning classifier that can distinguish between legitimate customers and those who are committing power theft by tampering with electricity meters or by other means. Prepaid users will be the ones we test the most for this, along with their long-term monthly bill history. In this paper, we tried to classify electricity users based on their regular bills and any notable changes to those bills, and then further categorise them into customers who are genuine and those who are responsible for fraud and theft. We have applied several machine learning techniques: Logistic Regression (LR), Support Vector Machines (SVM), Naïve Bayes Classifier (NB), Decision Tree (DT), Random Forest (RF) and Adaptive Boosting (AdaBoost) in order to discover the power theft and stop additional losses to the grid. The main motivation of this work is to find the best machine learning model that is the most effective, conserve electricity from waste, and prevent economic loss at the same time." @default.
- W4377699610 created "2023-05-24" @default.
- W4377699610 creator A5002009629 @default.
- W4377699610 creator A5029743023 @default.
- W4377699610 creator A5030913401 @default.
- W4377699610 creator A5051369686 @default.
- W4377699610 creator A5080262978 @default.
- W4377699610 creator A5086076438 @default.
- W4377699610 creator A5092000839 @default.
- W4377699610 creator A5092000840 @default.
- W4377699610 date "2023-04-07" @default.
- W4377699610 modified "2023-09-25" @default.
- W4377699610 title "Electricity Theft Detection Employing Machine Learning Algorithms" @default.
- W4377699610 cites W1486214003 @default.
- W4377699610 cites W2063375278 @default.
- W4377699610 cites W2212529815 @default.
- W4377699610 cites W2216946510 @default.
- W4377699610 cites W2546945975 @default.
- W4377699610 cites W2776990447 @default.
- W4377699610 cites W2831439818 @default.
- W4377699610 cites W2894817759 @default.
- W4377699610 cites W2912118475 @default.
- W4377699610 cites W2970705010 @default.
- W4377699610 cites W2975191529 @default.
- W4377699610 cites W2978986055 @default.
- W4377699610 cites W2979543333 @default.
- W4377699610 cites W2990217975 @default.
- W4377699610 cites W3087775622 @default.
- W4377699610 cites W3089091568 @default.
- W4377699610 cites W3097369108 @default.
- W4377699610 cites W3127541695 @default.
- W4377699610 cites W3200970259 @default.
- W4377699610 cites W3215334625 @default.
- W4377699610 cites W4236012099 @default.
- W4377699610 cites W4244895750 @default.
- W4377699610 doi "https://doi.org/10.1109/i2ct57861.2023.10126299" @default.
- W4377699610 hasPublicationYear "2023" @default.
- W4377699610 type Work @default.
- W4377699610 citedByCount "0" @default.
- W4377699610 crossrefType "proceedings-article" @default.
- W4377699610 hasAuthorship W4377699610A5002009629 @default.
- W4377699610 hasAuthorship W4377699610A5029743023 @default.
- W4377699610 hasAuthorship W4377699610A5030913401 @default.
- W4377699610 hasAuthorship W4377699610A5051369686 @default.
- W4377699610 hasAuthorship W4377699610A5080262978 @default.
- W4377699610 hasAuthorship W4377699610A5086076438 @default.
- W4377699610 hasAuthorship W4377699610A5092000839 @default.
- W4377699610 hasAuthorship W4377699610A5092000840 @default.
- W4377699610 hasConcept C10558101 @default.
- W4377699610 hasConcept C110083411 @default.
- W4377699610 hasConcept C11413529 @default.
- W4377699610 hasConcept C119599485 @default.
- W4377699610 hasConcept C119857082 @default.
- W4377699610 hasConcept C12267149 @default.
- W4377699610 hasConcept C127413603 @default.
- W4377699610 hasConcept C141404830 @default.
- W4377699610 hasConcept C154945302 @default.
- W4377699610 hasConcept C169258074 @default.
- W4377699610 hasConcept C206658404 @default.
- W4377699610 hasConcept C38652104 @default.
- W4377699610 hasConcept C41008148 @default.
- W4377699610 hasConcept C45942800 @default.
- W4377699610 hasConcept C46686674 @default.
- W4377699610 hasConcept C52001869 @default.
- W4377699610 hasConcept C64869954 @default.
- W4377699610 hasConcept C84525736 @default.
- W4377699610 hasConcept C95623464 @default.
- W4377699610 hasConceptScore W4377699610C10558101 @default.
- W4377699610 hasConceptScore W4377699610C110083411 @default.
- W4377699610 hasConceptScore W4377699610C11413529 @default.
- W4377699610 hasConceptScore W4377699610C119599485 @default.
- W4377699610 hasConceptScore W4377699610C119857082 @default.
- W4377699610 hasConceptScore W4377699610C12267149 @default.
- W4377699610 hasConceptScore W4377699610C127413603 @default.
- W4377699610 hasConceptScore W4377699610C141404830 @default.
- W4377699610 hasConceptScore W4377699610C154945302 @default.
- W4377699610 hasConceptScore W4377699610C169258074 @default.
- W4377699610 hasConceptScore W4377699610C206658404 @default.
- W4377699610 hasConceptScore W4377699610C38652104 @default.
- W4377699610 hasConceptScore W4377699610C41008148 @default.
- W4377699610 hasConceptScore W4377699610C45942800 @default.
- W4377699610 hasConceptScore W4377699610C46686674 @default.
- W4377699610 hasConceptScore W4377699610C52001869 @default.
- W4377699610 hasConceptScore W4377699610C64869954 @default.
- W4377699610 hasConceptScore W4377699610C84525736 @default.
- W4377699610 hasConceptScore W4377699610C95623464 @default.
- W4377699610 hasLocation W43776996101 @default.
- W4377699610 hasOpenAccess W4377699610 @default.
- W4377699610 hasPrimaryLocation W43776996101 @default.
- W4377699610 hasRelatedWork W2284947050 @default.
- W4377699610 hasRelatedWork W3107939966 @default.
- W4377699610 hasRelatedWork W3170784702 @default.
- W4377699610 hasRelatedWork W3204641204 @default.
- W4377699610 hasRelatedWork W4200057378 @default.
- W4377699610 hasRelatedWork W4283016678 @default.
- W4377699610 hasRelatedWork W4293069612 @default.
- W4377699610 hasRelatedWork W4296081764 @default.
- W4377699610 hasRelatedWork W4361733625 @default.
- W4377699610 hasRelatedWork W4375930479 @default.
- W4377699610 isParatext "false" @default.