Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377704489> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4377704489 abstract "This research is aim to detect kidney cysts from human kidney Ultrasound (USG) 2D Images. This research uses data from Hospital patients as many as 25 Ultrasound images of the human kidney in the format image .jpg. This research uses the K-Nearest Neighbor (KNN) method for image classification of ultrasound images then using Gray Level Co-Occurrence Matrix (GLCM) method for image extraction to detect cyst and non-cyst regions from the result of classification after that using Artificial Neural Network (ANN) method type Backpropagation for image detection to find cysts from human kidney Ultrasound (USG) 2D Image from the result of image extraction. The result of this research is producing the algorithm to implement the method and the tool software application to detect kidney cysts from ultrasound 2D images. The accuracy of this tool is 84% which can detect with accurate 21 kidney cysts from 25 kidney ultrasound 2D images that validate of a Urology Specialist Doctor." @default.
- W4377704489 created "2023-05-24" @default.
- W4377704489 creator A5022434343 @default.
- W4377704489 creator A5028664023 @default.
- W4377704489 date "2023-02-16" @default.
- W4377704489 modified "2023-10-17" @default.
- W4377704489 title "Detection of Kidney Cysts of Kidney Ultrasound Image using Hybrid Method: KNN, GLCM, and ANN Backpropagation" @default.
- W4377704489 cites W2081434183 @default.
- W4377704489 cites W2805553949 @default.
- W4377704489 cites W2913575069 @default.
- W4377704489 cites W2936571051 @default.
- W4377704489 cites W2963541855 @default.
- W4377704489 cites W3163237568 @default.
- W4377704489 cites W3196284293 @default.
- W4377704489 cites W3217292179 @default.
- W4377704489 cites W4200266843 @default.
- W4377704489 cites W4205750015 @default.
- W4377704489 cites W4210698384 @default.
- W4377704489 cites W4212803274 @default.
- W4377704489 cites W4213344369 @default.
- W4377704489 cites W4220712323 @default.
- W4377704489 cites W4220824936 @default.
- W4377704489 cites W4223937730 @default.
- W4377704489 cites W4240841468 @default.
- W4377704489 cites W4280554461 @default.
- W4377704489 cites W4280592124 @default.
- W4377704489 cites W4280592863 @default.
- W4377704489 cites W4283073405 @default.
- W4377704489 cites W4283078659 @default.
- W4377704489 cites W4283376453 @default.
- W4377704489 cites W4283721131 @default.
- W4377704489 cites W4283802395 @default.
- W4377704489 cites W4289444075 @default.
- W4377704489 cites W4291734267 @default.
- W4377704489 cites W4292640234 @default.
- W4377704489 cites W4292830042 @default.
- W4377704489 doi "https://doi.org/10.1109/iccosite57641.2023.10127703" @default.
- W4377704489 hasPublicationYear "2023" @default.
- W4377704489 type Work @default.
- W4377704489 citedByCount "0" @default.
- W4377704489 crossrefType "proceedings-article" @default.
- W4377704489 hasAuthorship W4377704489A5022434343 @default.
- W4377704489 hasAuthorship W4377704489A5028664023 @default.
- W4377704489 hasConcept C126322002 @default.
- W4377704489 hasConcept C126838900 @default.
- W4377704489 hasConcept C143753070 @default.
- W4377704489 hasConcept C153180895 @default.
- W4377704489 hasConcept C154945302 @default.
- W4377704489 hasConcept C155032097 @default.
- W4377704489 hasConcept C2779403450 @default.
- W4377704489 hasConcept C31972630 @default.
- W4377704489 hasConcept C41008148 @default.
- W4377704489 hasConcept C50644808 @default.
- W4377704489 hasConcept C52622490 @default.
- W4377704489 hasConcept C71924100 @default.
- W4377704489 hasConceptScore W4377704489C126322002 @default.
- W4377704489 hasConceptScore W4377704489C126838900 @default.
- W4377704489 hasConceptScore W4377704489C143753070 @default.
- W4377704489 hasConceptScore W4377704489C153180895 @default.
- W4377704489 hasConceptScore W4377704489C154945302 @default.
- W4377704489 hasConceptScore W4377704489C155032097 @default.
- W4377704489 hasConceptScore W4377704489C2779403450 @default.
- W4377704489 hasConceptScore W4377704489C31972630 @default.
- W4377704489 hasConceptScore W4377704489C41008148 @default.
- W4377704489 hasConceptScore W4377704489C50644808 @default.
- W4377704489 hasConceptScore W4377704489C52622490 @default.
- W4377704489 hasConceptScore W4377704489C71924100 @default.
- W4377704489 hasLocation W43777044891 @default.
- W4377704489 hasOpenAccess W4377704489 @default.
- W4377704489 hasPrimaryLocation W43777044891 @default.
- W4377704489 hasRelatedWork W1988452762 @default.
- W4377704489 hasRelatedWork W2139604010 @default.
- W4377704489 hasRelatedWork W2144059113 @default.
- W4377704489 hasRelatedWork W2146076056 @default.
- W4377704489 hasRelatedWork W2241457321 @default.
- W4377704489 hasRelatedWork W2811390910 @default.
- W4377704489 hasRelatedWork W2997155327 @default.
- W4377704489 hasRelatedWork W3156786002 @default.
- W4377704489 hasRelatedWork W2179998186 @default.
- W4377704489 hasRelatedWork W2181566033 @default.
- W4377704489 isParatext "false" @default.
- W4377704489 isRetracted "false" @default.
- W4377704489 workType "article" @default.