Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377710130> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4377710130 endingPage "12" @default.
- W4377710130 startingPage "1" @default.
- W4377710130 abstract "Network robustness refers to the ability of a network to continue its functioning against malicious attacks, which is critical for various natural and industrial networks. Network robustness can be quantitatively measured by a sequence of values that record the remaining functionality after a sequential node-or edge-removal attacks. Robustness evaluations are traditionally determined by attack simulations, which are computationally very time-consuming and sometimes practically infeasible. The convolutional neural network (CNN)-based prediction provides a cost-efficient approach to fast evaluating the network robustness. In this article, the prediction performances of the learning feature representation-based CNN (LFR-CNN) and PATCHY-SAN methods are compared through extensively empirical experiments. Specifically, three distributions of network size in the training data are investigated, including the uniform, Gaussian, and extra distributions. The relationship between the CNN input size and the dimension of the evaluated network is studied. Extensive experimental results reveal that compared to the training data of uniform distribution, the Gaussian and extra distributions can significantly improve both the prediction performance and the generalizability, for both LFR-CNN and PATCHY-SAN, and for various functionality robustness. The extension ability of LFR-CNN is significantly better than PATCHY-SAN, verified by extensive comparisons on predicting the robustness of unseen networks. In general, LFR-CNN outperforms PATCHY-SAN, and thus LFR-CNN is recommended over PATCHY-SAN. However, since both LFR-CNN and PATCHY-SAN have advantages for different scenarios, the optimal settings of the input size of CNN are recommended under different configurations." @default.
- W4377710130 created "2023-05-24" @default.
- W4377710130 creator A5020640888 @default.
- W4377710130 creator A5023459910 @default.
- W4377710130 creator A5024633466 @default.
- W4377710130 creator A5050683775 @default.
- W4377710130 creator A5074413224 @default.
- W4377710130 date "2023-01-01" @default.
- W4377710130 modified "2023-10-12" @default.
- W4377710130 title "Network Robustness Prediction: Influence of Training Data Distributions" @default.
- W4377710130 doi "https://doi.org/10.1109/tnnls.2023.3269753" @default.
- W4377710130 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37220060" @default.
- W4377710130 hasPublicationYear "2023" @default.
- W4377710130 type Work @default.
- W4377710130 citedByCount "0" @default.
- W4377710130 crossrefType "journal-article" @default.
- W4377710130 hasAuthorship W4377710130A5020640888 @default.
- W4377710130 hasAuthorship W4377710130A5023459910 @default.
- W4377710130 hasAuthorship W4377710130A5024633466 @default.
- W4377710130 hasAuthorship W4377710130A5050683775 @default.
- W4377710130 hasAuthorship W4377710130A5074413224 @default.
- W4377710130 hasConcept C104317684 @default.
- W4377710130 hasConcept C105795698 @default.
- W4377710130 hasConcept C119857082 @default.
- W4377710130 hasConcept C121332964 @default.
- W4377710130 hasConcept C124101348 @default.
- W4377710130 hasConcept C153180895 @default.
- W4377710130 hasConcept C154945302 @default.
- W4377710130 hasConcept C163716315 @default.
- W4377710130 hasConcept C185592680 @default.
- W4377710130 hasConcept C27158222 @default.
- W4377710130 hasConcept C33923547 @default.
- W4377710130 hasConcept C41008148 @default.
- W4377710130 hasConcept C55493867 @default.
- W4377710130 hasConcept C62520636 @default.
- W4377710130 hasConcept C63479239 @default.
- W4377710130 hasConcept C81363708 @default.
- W4377710130 hasConceptScore W4377710130C104317684 @default.
- W4377710130 hasConceptScore W4377710130C105795698 @default.
- W4377710130 hasConceptScore W4377710130C119857082 @default.
- W4377710130 hasConceptScore W4377710130C121332964 @default.
- W4377710130 hasConceptScore W4377710130C124101348 @default.
- W4377710130 hasConceptScore W4377710130C153180895 @default.
- W4377710130 hasConceptScore W4377710130C154945302 @default.
- W4377710130 hasConceptScore W4377710130C163716315 @default.
- W4377710130 hasConceptScore W4377710130C185592680 @default.
- W4377710130 hasConceptScore W4377710130C27158222 @default.
- W4377710130 hasConceptScore W4377710130C33923547 @default.
- W4377710130 hasConceptScore W4377710130C41008148 @default.
- W4377710130 hasConceptScore W4377710130C55493867 @default.
- W4377710130 hasConceptScore W4377710130C62520636 @default.
- W4377710130 hasConceptScore W4377710130C63479239 @default.
- W4377710130 hasConceptScore W4377710130C81363708 @default.
- W4377710130 hasFunder F4320321001 @default.
- W4377710130 hasLocation W43777101301 @default.
- W4377710130 hasLocation W43777101302 @default.
- W4377710130 hasOpenAccess W4377710130 @default.
- W4377710130 hasPrimaryLocation W43777101301 @default.
- W4377710130 hasRelatedWork W2175746458 @default.
- W4377710130 hasRelatedWork W2732542196 @default.
- W4377710130 hasRelatedWork W2738221750 @default.
- W4377710130 hasRelatedWork W2760085659 @default.
- W4377710130 hasRelatedWork W2883200793 @default.
- W4377710130 hasRelatedWork W3027997911 @default.
- W4377710130 hasRelatedWork W3093612317 @default.
- W4377710130 hasRelatedWork W3213778687 @default.
- W4377710130 hasRelatedWork W4287776258 @default.
- W4377710130 hasRelatedWork W4375852175 @default.
- W4377710130 isParatext "false" @default.
- W4377710130 isRetracted "false" @default.
- W4377710130 workType "article" @default.