Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377715521> ?p ?o ?g. }
- W4377715521 endingPage "17619" @default.
- W4377715521 startingPage "17603" @default.
- W4377715521 abstract "Rate-splitting multiple access (RSMA) and reconfigurable intelligent surface (RIS) techniques show promise in enhancing spectral efficiency in sixth-generation Internet of Things (IoT) networks. However, optimizing the synergy between these two methods is challenging due to the complex and dynamic environment. This study focuses on maximizing the sum-rate metric in RIS-assisted uplink multiantenna RSMA IoT networks to address this problem. We jointly optimized the base station beamforming design, power allocation, and RIS phase shifts to enhance the spectral efficiency with multiple mobile IoT devices present. The controlled parameters are continuous variables and the mathematical problem is non-concave, Therefore, we formulated the problem as a Markov decision process and used the deep deterministic policy gradient (DDPG) to determine the optimal joint actions. We proposed a safe action shaping process for the decision-making actor network to address constraint violations. Through a rigorous performance evaluation, we demonstrated that the DDPG approach with action shaping outperforms the current DDPG algorithm regarding the maximum achievable sum rate." @default.
- W4377715521 created "2023-05-24" @default.
- W4377715521 creator A5018823341 @default.
- W4377715521 creator A5041116914 @default.
- W4377715521 creator A5041978875 @default.
- W4377715521 creator A5045865971 @default.
- W4377715521 creator A5050623221 @default.
- W4377715521 creator A5062551120 @default.
- W4377715521 date "2023-10-15" @default.
- W4377715521 modified "2023-10-09" @default.
- W4377715521 title "Learning-Based Reconfigurable-Intelligent-Surface-Aided Rate-Splitting Multiple Access Networks" @default.
- W4377715521 cites W1538961851 @default.
- W4377715521 cites W1997834106 @default.
- W4377715521 cites W2099003693 @default.
- W4377715521 cites W2164911974 @default.
- W4377715521 cites W2771250869 @default.
- W4377715521 cites W2787255587 @default.
- W4377715521 cites W2895100588 @default.
- W4377715521 cites W2975790550 @default.
- W4377715521 cites W2978330116 @default.
- W4377715521 cites W2989668825 @default.
- W4377715521 cites W2995620260 @default.
- W4377715521 cites W3001613668 @default.
- W4377715521 cites W3020513938 @default.
- W4377715521 cites W3025201079 @default.
- W4377715521 cites W3044746003 @default.
- W4377715521 cites W3102217847 @default.
- W4377715521 cites W3104419102 @default.
- W4377715521 cites W3106758637 @default.
- W4377715521 cites W3115811799 @default.
- W4377715521 cites W3129366882 @default.
- W4377715521 cites W3129486236 @default.
- W4377715521 cites W3134947650 @default.
- W4377715521 cites W3135463241 @default.
- W4377715521 cites W3156456874 @default.
- W4377715521 cites W3160036209 @default.
- W4377715521 cites W3182660834 @default.
- W4377715521 cites W3185676396 @default.
- W4377715521 cites W3190430387 @default.
- W4377715521 cites W3198554349 @default.
- W4377715521 cites W3206671995 @default.
- W4377715521 cites W3213040861 @default.
- W4377715521 cites W4221149552 @default.
- W4377715521 cites W4221160108 @default.
- W4377715521 cites W4221166248 @default.
- W4377715521 cites W4285118711 @default.
- W4377715521 cites W4289536721 @default.
- W4377715521 cites W4309757170 @default.
- W4377715521 cites W4312992204 @default.
- W4377715521 cites W4318586180 @default.
- W4377715521 doi "https://doi.org/10.1109/jiot.2023.3279196" @default.
- W4377715521 hasPublicationYear "2023" @default.
- W4377715521 type Work @default.
- W4377715521 citedByCount "0" @default.
- W4377715521 crossrefType "journal-article" @default.
- W4377715521 hasAuthorship W4377715521A5018823341 @default.
- W4377715521 hasAuthorship W4377715521A5041116914 @default.
- W4377715521 hasAuthorship W4377715521A5041978875 @default.
- W4377715521 hasAuthorship W4377715521A5045865971 @default.
- W4377715521 hasAuthorship W4377715521A5050623221 @default.
- W4377715521 hasAuthorship W4377715521A5062551120 @default.
- W4377715521 hasConcept C105795698 @default.
- W4377715521 hasConcept C106189395 @default.
- W4377715521 hasConcept C111919701 @default.
- W4377715521 hasConcept C120314980 @default.
- W4377715521 hasConcept C126255220 @default.
- W4377715521 hasConcept C137246740 @default.
- W4377715521 hasConcept C138660444 @default.
- W4377715521 hasConcept C159886148 @default.
- W4377715521 hasConcept C162324750 @default.
- W4377715521 hasConcept C176217482 @default.
- W4377715521 hasConcept C187736073 @default.
- W4377715521 hasConcept C21547014 @default.
- W4377715521 hasConcept C2524010 @default.
- W4377715521 hasConcept C2776036281 @default.
- W4377715521 hasConcept C2780898871 @default.
- W4377715521 hasConcept C31258907 @default.
- W4377715521 hasConcept C33923547 @default.
- W4377715521 hasConcept C41008148 @default.
- W4377715521 hasConcept C54197355 @default.
- W4377715521 hasConcept C68649174 @default.
- W4377715521 hasConcept C76155785 @default.
- W4377715521 hasConcept C98045186 @default.
- W4377715521 hasConceptScore W4377715521C105795698 @default.
- W4377715521 hasConceptScore W4377715521C106189395 @default.
- W4377715521 hasConceptScore W4377715521C111919701 @default.
- W4377715521 hasConceptScore W4377715521C120314980 @default.
- W4377715521 hasConceptScore W4377715521C126255220 @default.
- W4377715521 hasConceptScore W4377715521C137246740 @default.
- W4377715521 hasConceptScore W4377715521C138660444 @default.
- W4377715521 hasConceptScore W4377715521C159886148 @default.
- W4377715521 hasConceptScore W4377715521C162324750 @default.
- W4377715521 hasConceptScore W4377715521C176217482 @default.
- W4377715521 hasConceptScore W4377715521C187736073 @default.
- W4377715521 hasConceptScore W4377715521C21547014 @default.
- W4377715521 hasConceptScore W4377715521C2524010 @default.
- W4377715521 hasConceptScore W4377715521C2776036281 @default.
- W4377715521 hasConceptScore W4377715521C2780898871 @default.