Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377820199> ?p ?o ?g. }
- W4377820199 endingPage "14" @default.
- W4377820199 startingPage "1" @default.
- W4377820199 abstract "Machine learning (ML) has been applied in civil engineering to predict the compressive strength of concrete with high accuracy. In this paper, five boosting ensemble algorithms, i.e., XGBoost, AdaBoost, GBDT, LightGBM, and CatBoost, were used to predict the compressive strength of high-performance concrete (HPC). The models were evaluated using performance indicators such as R2, root mean square error (RMSE), and mean absolute error (MAE). The results showed that the CatBoost model had the highest accuracy with a R2 (0.970) and a RMSE (2.916). The prediction accuracy of the model was increased through hyperparameter optimization, which got a higher with a R2 (0.975) and a RMSE (2.863). Meanwhile, the SHapley Additive exPlanations (SHAP) method was used to explain the output results of the optimal model (CatBoost), which generated explainable insights that further revealed the complex relationship between the prediction model parameters. The results showed that AGE, W/B, and W/C had the most impact on high-performance concrete compressive strength (HPCCS) prediction, which was similar to the results of sensitivity analysis. This study provided a theoretical basis and technical guidance for developing the mix design of a new high-performance concrete (HPC) system. In the future, the interpretable results of the model output should be iteratively checked and validated in the actual laboratory in order to provide guidance for engineering practice." @default.
- W4377820199 created "2023-05-24" @default.
- W4377820199 creator A5028207305 @default.
- W4377820199 creator A5032006841 @default.
- W4377820199 creator A5051610166 @default.
- W4377820199 creator A5052560070 @default.
- W4377820199 creator A5057301071 @default.
- W4377820199 creator A5069167621 @default.
- W4377820199 date "2023-05-22" @default.
- W4377820199 modified "2023-10-18" @default.
- W4377820199 title "Application of deep learning in civil engineering: boosting algorithms for predicting strength of concrete" @default.
- W4377820199 cites W1970245951 @default.
- W4377820199 cites W2012316003 @default.
- W4377820199 cites W2022525371 @default.
- W4377820199 cites W2042878435 @default.
- W4377820199 cites W2052757243 @default.
- W4377820199 cites W2061933243 @default.
- W4377820199 cites W2810153117 @default.
- W4377820199 cites W2920965395 @default.
- W4377820199 cites W2976353133 @default.
- W4377820199 cites W2998134678 @default.
- W4377820199 cites W2999615587 @default.
- W4377820199 cites W3038033549 @default.
- W4377820199 cites W3081231874 @default.
- W4377820199 cites W3125850143 @default.
- W4377820199 cites W3150319634 @default.
- W4377820199 cites W3153764057 @default.
- W4377820199 cites W3194930403 @default.
- W4377820199 cites W3212595790 @default.
- W4377820199 cites W4206500412 @default.
- W4377820199 cites W4207022764 @default.
- W4377820199 cites W4210750266 @default.
- W4377820199 cites W4220716014 @default.
- W4377820199 cites W4220934920 @default.
- W4377820199 cites W4220969554 @default.
- W4377820199 cites W4221092976 @default.
- W4377820199 cites W4221122224 @default.
- W4377820199 cites W4226408629 @default.
- W4377820199 cites W4281859794 @default.
- W4377820199 cites W4282932299 @default.
- W4377820199 cites W4284885672 @default.
- W4377820199 doi "https://doi.org/10.3233/jifs-231021" @default.
- W4377820199 hasPublicationYear "2023" @default.
- W4377820199 type Work @default.
- W4377820199 citedByCount "0" @default.
- W4377820199 crossrefType "journal-article" @default.
- W4377820199 hasAuthorship W4377820199A5028207305 @default.
- W4377820199 hasAuthorship W4377820199A5032006841 @default.
- W4377820199 hasAuthorship W4377820199A5051610166 @default.
- W4377820199 hasAuthorship W4377820199A5052560070 @default.
- W4377820199 hasAuthorship W4377820199A5057301071 @default.
- W4377820199 hasAuthorship W4377820199A5069167621 @default.
- W4377820199 hasConcept C105795698 @default.
- W4377820199 hasConcept C11413529 @default.
- W4377820199 hasConcept C119857082 @default.
- W4377820199 hasConcept C122383733 @default.
- W4377820199 hasConcept C12267149 @default.
- W4377820199 hasConcept C139945424 @default.
- W4377820199 hasConcept C141404830 @default.
- W4377820199 hasConcept C154945302 @default.
- W4377820199 hasConcept C159985019 @default.
- W4377820199 hasConcept C167085575 @default.
- W4377820199 hasConcept C188154048 @default.
- W4377820199 hasConcept C192562407 @default.
- W4377820199 hasConcept C30407753 @default.
- W4377820199 hasConcept C33923547 @default.
- W4377820199 hasConcept C41008148 @default.
- W4377820199 hasConcept C46686674 @default.
- W4377820199 hasConcept C8642999 @default.
- W4377820199 hasConceptScore W4377820199C105795698 @default.
- W4377820199 hasConceptScore W4377820199C11413529 @default.
- W4377820199 hasConceptScore W4377820199C119857082 @default.
- W4377820199 hasConceptScore W4377820199C122383733 @default.
- W4377820199 hasConceptScore W4377820199C12267149 @default.
- W4377820199 hasConceptScore W4377820199C139945424 @default.
- W4377820199 hasConceptScore W4377820199C141404830 @default.
- W4377820199 hasConceptScore W4377820199C154945302 @default.
- W4377820199 hasConceptScore W4377820199C159985019 @default.
- W4377820199 hasConceptScore W4377820199C167085575 @default.
- W4377820199 hasConceptScore W4377820199C188154048 @default.
- W4377820199 hasConceptScore W4377820199C192562407 @default.
- W4377820199 hasConceptScore W4377820199C30407753 @default.
- W4377820199 hasConceptScore W4377820199C33923547 @default.
- W4377820199 hasConceptScore W4377820199C41008148 @default.
- W4377820199 hasConceptScore W4377820199C46686674 @default.
- W4377820199 hasConceptScore W4377820199C8642999 @default.
- W4377820199 hasLocation W43778201991 @default.
- W4377820199 hasOpenAccess W4377820199 @default.
- W4377820199 hasPrimaryLocation W43778201991 @default.
- W4377820199 hasRelatedWork W3022025260 @default.
- W4377820199 hasRelatedWork W3119608572 @default.
- W4377820199 hasRelatedWork W3210229324 @default.
- W4377820199 hasRelatedWork W4206076471 @default.
- W4377820199 hasRelatedWork W4281754927 @default.
- W4377820199 hasRelatedWork W4291011450 @default.
- W4377820199 hasRelatedWork W4295213473 @default.
- W4377820199 hasRelatedWork W4298144988 @default.
- W4377820199 hasRelatedWork W4375930479 @default.