Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377942240> ?p ?o ?g. }
- W4377942240 abstract "Physically based numerical weather prediction and climate models provide useful information for a large number of end users, such as flood forecasters, water resource managers, and farmers. However, due to model uncertainties arising from, e.g., initial value and model errors, the simulation results do not match the in situ or remotely sensed observations to arbitrary accuracy. Merging model-based data with observations yield promising results benefiting simultaneously from the information content of the model results and observations. Machine learning (ML) and/or deep learning (DL) methods have been shown to be useful tools in closing the gap between models and observations due to the capacity in the representation of the non-linear space–time correlation structure. This study focused on using UNet encoder–decoder convolutional neural networks (CNNs) for extracting spatiotemporal features from model simulations for predicting the actual mismatches (errors) between the simulation results and a reference data set. Here, the climate simulations over Europe from the Terrestrial Systems Modeling Platform (TSMP) were used as input to the CNN. The COSMO-REA6 reanalysis data were used as a reference. The proposed merging framework was applied to mismatches in precipitation and surface pressure representing more and less chaotic variables, respectively. The merged data show a strong average improvement in mean error (~ 47%), correlation coefficient (~ 37%), and root mean square error (~22%). To highlight the performance of the DL-based method, the results were compared with the results obtained by a baseline method, quantile mapping. The proposed DL-based merging methodology can be used either during the simulation to correct model forecast output online or in a post-processing step, for downstream impact applications, such as flood forecasting, water resources management, and agriculture." @default.
- W4377942240 created "2023-05-25" @default.
- W4377942240 creator A5084556656 @default.
- W4377942240 creator A5087761556 @default.
- W4377942240 date "2023-05-24" @default.
- W4377942240 modified "2023-10-01" @default.
- W4377942240 title "Deep learning of model- and reanalysis-based precipitation and pressure mismatches over Europe" @default.
- W4377942240 cites W1485009520 @default.
- W4377942240 cites W1513919779 @default.
- W4377942240 cites W1831098712 @default.
- W4377942240 cites W1907702319 @default.
- W4377942240 cites W1969312858 @default.
- W4377942240 cites W2000945449 @default.
- W4377942240 cites W2064908124 @default.
- W4377942240 cites W2079827920 @default.
- W4377942240 cites W2089581735 @default.
- W4377942240 cites W2092012942 @default.
- W4377942240 cites W2168515722 @default.
- W4377942240 cites W2605478633 @default.
- W4377942240 cites W2613687907 @default.
- W4377942240 cites W2773928770 @default.
- W4377942240 cites W2908893700 @default.
- W4377942240 cites W2909984890 @default.
- W4377942240 cites W2910945549 @default.
- W4377942240 cites W2940542567 @default.
- W4377942240 cites W2953443937 @default.
- W4377942240 cites W2977666392 @default.
- W4377942240 cites W2980438676 @default.
- W4377942240 cites W2987039128 @default.
- W4377942240 cites W2991506439 @default.
- W4377942240 cites W2996137657 @default.
- W4377942240 cites W3084519032 @default.
- W4377942240 cites W3121918964 @default.
- W4377942240 cites W3125832420 @default.
- W4377942240 cites W3171394698 @default.
- W4377942240 cites W4220773927 @default.
- W4377942240 cites W4255806503 @default.
- W4377942240 cites W4256026662 @default.
- W4377942240 cites W4281392848 @default.
- W4377942240 doi "https://doi.org/10.3389/frwa.2023.1178114" @default.
- W4377942240 hasPublicationYear "2023" @default.
- W4377942240 type Work @default.
- W4377942240 citedByCount "1" @default.
- W4377942240 countsByYear W43779422402023 @default.
- W4377942240 crossrefType "journal-article" @default.
- W4377942240 hasAuthorship W4377942240A5084556656 @default.
- W4377942240 hasAuthorship W4377942240A5087761556 @default.
- W4377942240 hasBestOaLocation W43779422401 @default.
- W4377942240 hasConcept C105795698 @default.
- W4377942240 hasConcept C11413529 @default.
- W4377942240 hasConcept C118671147 @default.
- W4377942240 hasConcept C119857082 @default.
- W4377942240 hasConcept C124101348 @default.
- W4377942240 hasConcept C139945424 @default.
- W4377942240 hasConcept C154945302 @default.
- W4377942240 hasConcept C177264268 @default.
- W4377942240 hasConcept C17744445 @default.
- W4377942240 hasConcept C199360897 @default.
- W4377942240 hasConcept C199539241 @default.
- W4377942240 hasConcept C2776359362 @default.
- W4377942240 hasConcept C2780092901 @default.
- W4377942240 hasConcept C33923547 @default.
- W4377942240 hasConcept C41008148 @default.
- W4377942240 hasConcept C58489278 @default.
- W4377942240 hasConcept C81363708 @default.
- W4377942240 hasConcept C94625758 @default.
- W4377942240 hasConceptScore W4377942240C105795698 @default.
- W4377942240 hasConceptScore W4377942240C11413529 @default.
- W4377942240 hasConceptScore W4377942240C118671147 @default.
- W4377942240 hasConceptScore W4377942240C119857082 @default.
- W4377942240 hasConceptScore W4377942240C124101348 @default.
- W4377942240 hasConceptScore W4377942240C139945424 @default.
- W4377942240 hasConceptScore W4377942240C154945302 @default.
- W4377942240 hasConceptScore W4377942240C177264268 @default.
- W4377942240 hasConceptScore W4377942240C17744445 @default.
- W4377942240 hasConceptScore W4377942240C199360897 @default.
- W4377942240 hasConceptScore W4377942240C199539241 @default.
- W4377942240 hasConceptScore W4377942240C2776359362 @default.
- W4377942240 hasConceptScore W4377942240C2780092901 @default.
- W4377942240 hasConceptScore W4377942240C33923547 @default.
- W4377942240 hasConceptScore W4377942240C41008148 @default.
- W4377942240 hasConceptScore W4377942240C58489278 @default.
- W4377942240 hasConceptScore W4377942240C81363708 @default.
- W4377942240 hasConceptScore W4377942240C94625758 @default.
- W4377942240 hasFunder F4320336060 @default.
- W4377942240 hasLocation W43779422401 @default.
- W4377942240 hasOpenAccess W4377942240 @default.
- W4377942240 hasPrimaryLocation W43779422401 @default.
- W4377942240 hasRelatedWork W1542675444 @default.
- W4377942240 hasRelatedWork W2347880541 @default.
- W4377942240 hasRelatedWork W2376162334 @default.
- W4377942240 hasRelatedWork W2953116260 @default.
- W4377942240 hasRelatedWork W2995227436 @default.
- W4377942240 hasRelatedWork W3005704161 @default.
- W4377942240 hasRelatedWork W3021430260 @default.
- W4377942240 hasRelatedWork W3027997911 @default.
- W4377942240 hasRelatedWork W3082705149 @default.
- W4377942240 hasRelatedWork W4287776258 @default.
- W4377942240 hasVolume "5" @default.
- W4377942240 isParatext "false" @default.