Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377942379> ?p ?o ?g. }
- W4377942379 endingPage "5015" @default.
- W4377942379 startingPage "5015" @default.
- W4377942379 abstract "This paper demonstrates an intruder detection system using a strain-based optical fiber Bragg grating (FBG), machine learning (ML), and adaptive thresholding to classify the intruder as no intruder, intruder, or wind at low levels of signal-to-noise ratio. We demonstrate the intruder detection system using a portion of a real fence manufactured and installed around one of the engineering college’s gardens at King Saud University. The experimental results show that adaptive thresholding can help improve the performance of machine learning classifiers, such as linear discriminant analysis (LDA) or logistic regression algorithms in identifying an intruder’s existence at low optical signal-to-noise ratio (OSNR) scenarios. The proposed method can achieve an average accuracy of 99.17% when the OSNR level is <0.5 dB." @default.
- W4377942379 created "2023-05-25" @default.
- W4377942379 creator A5018003528 @default.
- W4377942379 creator A5022374253 @default.
- W4377942379 creator A5023205615 @default.
- W4377942379 creator A5028985774 @default.
- W4377942379 creator A5060852452 @default.
- W4377942379 creator A5061245657 @default.
- W4377942379 creator A5072665297 @default.
- W4377942379 creator A5085871026 @default.
- W4377942379 creator A5092006693 @default.
- W4377942379 date "2023-05-24" @default.
- W4377942379 modified "2023-09-27" @default.
- W4377942379 title "Strain FBG-Based Sensor for Detecting Fence Intruders Using Machine Learning and Adaptive Thresholding" @default.
- W4377942379 cites W1732574345 @default.
- W4377942379 cites W1992793736 @default.
- W4377942379 cites W2001619934 @default.
- W4377942379 cites W2017396732 @default.
- W4377942379 cites W2155423555 @default.
- W4377942379 cites W2165341676 @default.
- W4377942379 cites W2169582787 @default.
- W4377942379 cites W2294103580 @default.
- W4377942379 cites W2324478479 @default.
- W4377942379 cites W2326927858 @default.
- W4377942379 cites W2766940139 @default.
- W4377942379 cites W2769345353 @default.
- W4377942379 cites W2883024290 @default.
- W4377942379 cites W2883241406 @default.
- W4377942379 cites W2890608288 @default.
- W4377942379 cites W2912267671 @default.
- W4377942379 cites W2935904914 @default.
- W4377942379 cites W2944445300 @default.
- W4377942379 cites W2964101383 @default.
- W4377942379 cites W2979700798 @default.
- W4377942379 cites W2987225788 @default.
- W4377942379 cites W2989043121 @default.
- W4377942379 cites W3025130744 @default.
- W4377942379 cites W3039675033 @default.
- W4377942379 cites W3040066559 @default.
- W4377942379 cites W3041455988 @default.
- W4377942379 cites W3080352366 @default.
- W4377942379 cites W3087395871 @default.
- W4377942379 cites W3097179638 @default.
- W4377942379 cites W3114964331 @default.
- W4377942379 cites W3134184937 @default.
- W4377942379 cites W3154923611 @default.
- W4377942379 cites W3174889029 @default.
- W4377942379 cites W3199239851 @default.
- W4377942379 cites W4206806999 @default.
- W4377942379 cites W4214943005 @default.
- W4377942379 cites W4224297072 @default.
- W4377942379 cites W4226022847 @default.
- W4377942379 cites W4230797294 @default.
- W4377942379 cites W4280516209 @default.
- W4377942379 cites W4281686564 @default.
- W4377942379 cites W4288032673 @default.
- W4377942379 cites W4294956072 @default.
- W4377942379 cites W4303981300 @default.
- W4377942379 cites W4309007274 @default.
- W4377942379 cites W4311718696 @default.
- W4377942379 cites W4313855791 @default.
- W4377942379 cites W4315778265 @default.
- W4377942379 cites W4320479655 @default.
- W4377942379 cites W4323307170 @default.
- W4377942379 cites W4365458060 @default.
- W4377942379 cites W2080829609 @default.
- W4377942379 doi "https://doi.org/10.3390/s23115015" @default.
- W4377942379 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37299742" @default.
- W4377942379 hasPublicationYear "2023" @default.
- W4377942379 type Work @default.
- W4377942379 citedByCount "0" @default.
- W4377942379 crossrefType "journal-article" @default.
- W4377942379 hasAuthorship W4377942379A5018003528 @default.
- W4377942379 hasAuthorship W4377942379A5022374253 @default.
- W4377942379 hasAuthorship W4377942379A5023205615 @default.
- W4377942379 hasAuthorship W4377942379A5028985774 @default.
- W4377942379 hasAuthorship W4377942379A5060852452 @default.
- W4377942379 hasAuthorship W4377942379A5061245657 @default.
- W4377942379 hasAuthorship W4377942379A5072665297 @default.
- W4377942379 hasAuthorship W4377942379A5085871026 @default.
- W4377942379 hasAuthorship W4377942379A5092006693 @default.
- W4377942379 hasBestOaLocation W43779423791 @default.
- W4377942379 hasConcept C115961682 @default.
- W4377942379 hasConcept C119857082 @default.
- W4377942379 hasConcept C12267149 @default.
- W4377942379 hasConcept C13944312 @default.
- W4377942379 hasConcept C153180895 @default.
- W4377942379 hasConcept C154945302 @default.
- W4377942379 hasConcept C191178318 @default.
- W4377942379 hasConcept C194232370 @default.
- W4377942379 hasConcept C199360897 @default.
- W4377942379 hasConcept C2779843651 @default.
- W4377942379 hasConcept C31972630 @default.
- W4377942379 hasConcept C41008148 @default.
- W4377942379 hasConcept C43091971 @default.
- W4377942379 hasConcept C69738355 @default.
- W4377942379 hasConcept C76155785 @default.
- W4377942379 hasConcept C99498987 @default.