Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377943306> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4377943306 abstract "Summary In this paper, we developed an object detection and identification framework to bolster public safety. Before developing the proposed framework, several existing frameworks were analyzed to bolster public safety. The other models were carefully observed for their strengths and weaknesses based on the machine learning and deep learning algorithms they operate on. All these were kept in mind during the development of the proposed model. The proposed framework consists of an unmanned aerial vehicle (UAV) utilized for data collection that constantly monitors and captures the images of the designated areas. A convolutional neural network (CNN) model is developed to recognize a threat and identifies various handheld objects, such as guns and knives, which facilitate criminals to commit crimes. The proposed CNN model comprises 16 layers with input, convolutional, dense, max‐pool, and flattened layers of different dimensions. For that, a benchmarked dataset, that is, small objects handled similarly to a weapon (SOHAs), a weapon detection dataset is used. It comprises six classes of 8945 images, with 5947 used for training, 1699 used for testing, and 849 used for validation. Once the CNN model accomplishes the object identification and classification, that is, the person is criminal or non‐criminal, the criminal is forwarded to various law enforcement agencies and non‐criminal data are again forwarded to the CNN model for improvising its accuracy rate. As a result, the proposed CNN model outperforms several pre‐trained models with an accuracy of 0.8352 and a validation accuracy of 0.7758. In addition, the proposed model gives a minimal loss of 0.83 with a validation loss of 0.97. The proposed framework decreases the burden on crime‐fighting agencies and increases the accuracy of crime detection. Additionally, it ensures fairness and operates at a meager computational cost compared to similar pre‐trained models." @default.
- W4377943306 created "2023-05-25" @default.
- W4377943306 creator A5004131475 @default.
- W4377943306 creator A5044414974 @default.
- W4377943306 creator A5055678785 @default.
- W4377943306 creator A5058080028 @default.
- W4377943306 creator A5075393874 @default.
- W4377943306 creator A5089077811 @default.
- W4377943306 creator A5091210213 @default.
- W4377943306 creator A5092006939 @default.
- W4377943306 date "2023-05-23" @default.
- W4377943306 modified "2023-10-18" @default.
- W4377943306 title "Convolutional neural network and unmanned aerial vehicle‐based public safety framework for human life protection" @default.
- W4377943306 cites W2782495288 @default.
- W4377943306 cites W2792779121 @default.
- W4377943306 cites W2804425909 @default.
- W4377943306 cites W2888396216 @default.
- W4377943306 cites W2973617321 @default.
- W4377943306 cites W2990218048 @default.
- W4377943306 cites W2999951129 @default.
- W4377943306 cites W3089838435 @default.
- W4377943306 cites W3090744703 @default.
- W4377943306 cites W3107119534 @default.
- W4377943306 cites W3110646753 @default.
- W4377943306 cites W3123587234 @default.
- W4377943306 cites W3158737092 @default.
- W4377943306 cites W3160715410 @default.
- W4377943306 cites W3162886737 @default.
- W4377943306 cites W3200002721 @default.
- W4377943306 cites W3200314056 @default.
- W4377943306 cites W3203220486 @default.
- W4377943306 cites W3204885060 @default.
- W4377943306 cites W4200313089 @default.
- W4377943306 cites W4205510415 @default.
- W4377943306 cites W4285264426 @default.
- W4377943306 cites W4287148454 @default.
- W4377943306 cites W4291743636 @default.
- W4377943306 cites W4294838949 @default.
- W4377943306 doi "https://doi.org/10.1002/dac.5545" @default.
- W4377943306 hasPublicationYear "2023" @default.
- W4377943306 type Work @default.
- W4377943306 citedByCount "0" @default.
- W4377943306 crossrefType "journal-article" @default.
- W4377943306 hasAuthorship W4377943306A5004131475 @default.
- W4377943306 hasAuthorship W4377943306A5044414974 @default.
- W4377943306 hasAuthorship W4377943306A5055678785 @default.
- W4377943306 hasAuthorship W4377943306A5058080028 @default.
- W4377943306 hasAuthorship W4377943306A5075393874 @default.
- W4377943306 hasAuthorship W4377943306A5089077811 @default.
- W4377943306 hasAuthorship W4377943306A5091210213 @default.
- W4377943306 hasAuthorship W4377943306A5092006939 @default.
- W4377943306 hasConcept C108583219 @default.
- W4377943306 hasConcept C116834253 @default.
- W4377943306 hasConcept C119857082 @default.
- W4377943306 hasConcept C153180980 @default.
- W4377943306 hasConcept C154945302 @default.
- W4377943306 hasConcept C17744445 @default.
- W4377943306 hasConcept C199539241 @default.
- W4377943306 hasConcept C2780262971 @default.
- W4377943306 hasConcept C2781238097 @default.
- W4377943306 hasConcept C38652104 @default.
- W4377943306 hasConcept C41008148 @default.
- W4377943306 hasConcept C59822182 @default.
- W4377943306 hasConcept C77088390 @default.
- W4377943306 hasConcept C81363708 @default.
- W4377943306 hasConcept C86803240 @default.
- W4377943306 hasConceptScore W4377943306C108583219 @default.
- W4377943306 hasConceptScore W4377943306C116834253 @default.
- W4377943306 hasConceptScore W4377943306C119857082 @default.
- W4377943306 hasConceptScore W4377943306C153180980 @default.
- W4377943306 hasConceptScore W4377943306C154945302 @default.
- W4377943306 hasConceptScore W4377943306C17744445 @default.
- W4377943306 hasConceptScore W4377943306C199539241 @default.
- W4377943306 hasConceptScore W4377943306C2780262971 @default.
- W4377943306 hasConceptScore W4377943306C2781238097 @default.
- W4377943306 hasConceptScore W4377943306C38652104 @default.
- W4377943306 hasConceptScore W4377943306C41008148 @default.
- W4377943306 hasConceptScore W4377943306C59822182 @default.
- W4377943306 hasConceptScore W4377943306C77088390 @default.
- W4377943306 hasConceptScore W4377943306C81363708 @default.
- W4377943306 hasConceptScore W4377943306C86803240 @default.
- W4377943306 hasFunder F4320321145 @default.
- W4377943306 hasLocation W43779433061 @default.
- W4377943306 hasOpenAccess W4377943306 @default.
- W4377943306 hasPrimaryLocation W43779433061 @default.
- W4377943306 hasRelatedWork W2136634148 @default.
- W4377943306 hasRelatedWork W3029198973 @default.
- W4377943306 hasRelatedWork W3133861977 @default.
- W4377943306 hasRelatedWork W3167935049 @default.
- W4377943306 hasRelatedWork W3193565141 @default.
- W4377943306 hasRelatedWork W4226493464 @default.
- W4377943306 hasRelatedWork W4293227618 @default.
- W4377943306 hasRelatedWork W4312417841 @default.
- W4377943306 hasRelatedWork W4367365664 @default.
- W4377943306 hasRelatedWork W4997601 @default.
- W4377943306 isParatext "false" @default.
- W4377943306 isRetracted "false" @default.
- W4377943306 workType "article" @default.