Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377964462> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4377964462 abstract "As the E-commerce sector is getting large, the use of electronic money and is getting wider and wider. Credit cards are the most useful and easy tools for payment. It is easy to use and reduces the efforts made by humans. But with advantages some disadvantages also come hand in hand. Many frauds take place while making the transactions and due to this many people lose millions of money. Hence, there need to be a detection system so that people can make the transactions without the fear of frauds. In today’s time there are many technologies which can help in making such a system. Some technologies are “Neural Network, Artificial Intelligence, Bayesian Network, Data mining, Artificial Immune System, K-nearest neighbor algorithm, Decision Tree, Fuzzy Logic Based System, Support Vector Machine, Machine learning, Genetic Programming etc”. This paper will include many surveys which will be conducted in which people will use different techniques to make a strong system. The work will also be aiming at making a strong detection system using libraries like numpy, sklearn and other py libraries. The problem is solved by using a classifier which can differentiate between fraud and legit transactions based on the class and time. The dataset contains 31 columns among which 28 columns are named as v1, v2, v3…. Due to security purposes, 2 columns are time and amount [1]. The total amount of transactions were 283.806 with only 492 fraud cases and rest legit transactions. In today’s time there are credit cards in the market for kids who are under 18 as well. Therefore it is important for a system to be developed for safety. Fraudsters can use the money for many illegal practices as well. This paper will use Random Forest Classifier and Decision tree to test the dataset [2]. The dataset is of some card holders from Europe." @default.
- W4377964462 created "2023-05-25" @default.
- W4377964462 creator A5006215053 @default.
- W4377964462 creator A5046487977 @default.
- W4377964462 creator A5049308300 @default.
- W4377964462 creator A5091335910 @default.
- W4377964462 date "2023-01-23" @default.
- W4377964462 modified "2023-10-18" @default.
- W4377964462 title "An Ensemble Of Machine And Deep Learning Models For Real Time Credit Card Scam Recognition" @default.
- W4377964462 cites W2944842185 @default.
- W4377964462 cites W3023003778 @default.
- W4377964462 cites W3038003513 @default.
- W4377964462 cites W3048656210 @default.
- W4377964462 cites W3096733902 @default.
- W4377964462 cites W4292318069 @default.
- W4377964462 doi "https://doi.org/10.1109/iccci56745.2023.10128473" @default.
- W4377964462 hasPublicationYear "2023" @default.
- W4377964462 type Work @default.
- W4377964462 citedByCount "0" @default.
- W4377964462 crossrefType "proceedings-article" @default.
- W4377964462 hasAuthorship W4377964462A5006215053 @default.
- W4377964462 hasAuthorship W4377964462A5046487977 @default.
- W4377964462 hasAuthorship W4377964462A5049308300 @default.
- W4377964462 hasAuthorship W4377964462A5091335910 @default.
- W4377964462 hasConcept C119857082 @default.
- W4377964462 hasConcept C12267149 @default.
- W4377964462 hasConcept C136764020 @default.
- W4377964462 hasConcept C145097563 @default.
- W4377964462 hasConcept C154945302 @default.
- W4377964462 hasConcept C2780747020 @default.
- W4377964462 hasConcept C2983355114 @default.
- W4377964462 hasConcept C38652104 @default.
- W4377964462 hasConcept C41008148 @default.
- W4377964462 hasConcept C50644808 @default.
- W4377964462 hasConcept C52001869 @default.
- W4377964462 hasConcept C84525736 @default.
- W4377964462 hasConcept C95623464 @default.
- W4377964462 hasConceptScore W4377964462C119857082 @default.
- W4377964462 hasConceptScore W4377964462C12267149 @default.
- W4377964462 hasConceptScore W4377964462C136764020 @default.
- W4377964462 hasConceptScore W4377964462C145097563 @default.
- W4377964462 hasConceptScore W4377964462C154945302 @default.
- W4377964462 hasConceptScore W4377964462C2780747020 @default.
- W4377964462 hasConceptScore W4377964462C2983355114 @default.
- W4377964462 hasConceptScore W4377964462C38652104 @default.
- W4377964462 hasConceptScore W4377964462C41008148 @default.
- W4377964462 hasConceptScore W4377964462C50644808 @default.
- W4377964462 hasConceptScore W4377964462C52001869 @default.
- W4377964462 hasConceptScore W4377964462C84525736 @default.
- W4377964462 hasConceptScore W4377964462C95623464 @default.
- W4377964462 hasLocation W43779644621 @default.
- W4377964462 hasOpenAccess W4377964462 @default.
- W4377964462 hasPrimaryLocation W43779644621 @default.
- W4377964462 hasRelatedWork W2084779923 @default.
- W4377964462 hasRelatedWork W2999867517 @default.
- W4377964462 hasRelatedWork W3096733902 @default.
- W4377964462 hasRelatedWork W3114654997 @default.
- W4377964462 hasRelatedWork W3125469249 @default.
- W4377964462 hasRelatedWork W3127425528 @default.
- W4377964462 hasRelatedWork W4206019394 @default.
- W4377964462 hasRelatedWork W4286641170 @default.
- W4377964462 hasRelatedWork W4297493941 @default.
- W4377964462 hasRelatedWork W4312373044 @default.
- W4377964462 isParatext "false" @default.
- W4377964462 isRetracted "false" @default.
- W4377964462 workType "article" @default.