Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377966300> ?p ?o ?g. }
- W4377966300 endingPage "104177" @default.
- W4377966300 startingPage "104177" @default.
- W4377966300 abstract "Asphalt pavement deformation is a common phenomenon due to the material property and traffic loads. Aiming at ensuring traffic comfort and safety, it is essential to constantly monitor the multi-scale pavement deformation with a non-destructive and automatic system. This paper presents a full field-of-view asphalt pavement deformation inspection framework based on multi-dimensional surface data and machine learning, which can detect and measure pavement rutting, roughness and large-span deformation simultaneously. In this integrated system, one-dimensional convolutional neural network (1D CNN) classification and localization models are developed for two-step rutting detection. The quarter-car model with multiple measuring lines is employed for full-lane international roughness index (IRI) measurement and spatial analysis. The unsupervised K-means convolutional neural network (K-CNN) model is proposed for large-span deformation detection. The results show that the overall F1 scores of rutting classification and localization are 99.56% and 97.24%, respectively. The full-lane measurement suggests that IRI presents a bimodal distribution in transverse space due to the concentrated traffic loads on the wheel path. In addition, the unsupervised K-CNN achieves an average consistency index (CI) of 91.61% on large-span sunken and heave deformation segmentation." @default.
- W4377966300 created "2023-05-25" @default.
- W4377966300 creator A5020035897 @default.
- W4377966300 creator A5027288861 @default.
- W4377966300 creator A5037066469 @default.
- W4377966300 creator A5055417775 @default.
- W4377966300 creator A5057485967 @default.
- W4377966300 creator A5064842058 @default.
- W4377966300 creator A5071277793 @default.
- W4377966300 date "2023-07-01" @default.
- W4377966300 modified "2023-09-30" @default.
- W4377966300 title "Multi-scale asphalt pavement deformation detection and measurement based on machine learning of full field-of-view digital surface data" @default.
- W4377966300 cites W1644863801 @default.
- W4377966300 cites W1856086371 @default.
- W4377966300 cites W1989359859 @default.
- W4377966300 cites W2113693987 @default.
- W4377966300 cites W2123583381 @default.
- W4377966300 cites W2140405352 @default.
- W4377966300 cites W2148304743 @default.
- W4377966300 cites W2221213799 @default.
- W4377966300 cites W2290622681 @default.
- W4377966300 cites W2402008511 @default.
- W4377966300 cites W2462486537 @default.
- W4377966300 cites W2481149086 @default.
- W4377966300 cites W2589774830 @default.
- W4377966300 cites W2592665334 @default.
- W4377966300 cites W2605112982 @default.
- W4377966300 cites W2731152576 @default.
- W4377966300 cites W2737578029 @default.
- W4377966300 cites W2748643398 @default.
- W4377966300 cites W2801780873 @default.
- W4377966300 cites W2887826853 @default.
- W4377966300 cites W2889372662 @default.
- W4377966300 cites W2896496331 @default.
- W4377966300 cites W2905499010 @default.
- W4377966300 cites W2909978560 @default.
- W4377966300 cites W2912530595 @default.
- W4377966300 cites W2914213146 @default.
- W4377966300 cites W2935584386 @default.
- W4377966300 cites W2955191116 @default.
- W4377966300 cites W2963073614 @default.
- W4377966300 cites W2965435055 @default.
- W4377966300 cites W2981009733 @default.
- W4377966300 cites W2998274727 @default.
- W4377966300 cites W2998997213 @default.
- W4377966300 cites W3004853660 @default.
- W4377966300 cites W3026984425 @default.
- W4377966300 cites W3033548640 @default.
- W4377966300 cites W3039432969 @default.
- W4377966300 cites W3100777112 @default.
- W4377966300 cites W3109383363 @default.
- W4377966300 cites W3112601650 @default.
- W4377966300 cites W3114333203 @default.
- W4377966300 cites W3130011030 @default.
- W4377966300 cites W3134755870 @default.
- W4377966300 cites W3157625366 @default.
- W4377966300 cites W3164243632 @default.
- W4377966300 cites W3175064897 @default.
- W4377966300 cites W3196343811 @default.
- W4377966300 cites W4200472356 @default.
- W4377966300 cites W4243669958 @default.
- W4377966300 cites W4306828888 @default.
- W4377966300 doi "https://doi.org/10.1016/j.trc.2023.104177" @default.
- W4377966300 hasPublicationYear "2023" @default.
- W4377966300 type Work @default.
- W4377966300 citedByCount "0" @default.
- W4377966300 crossrefType "journal-article" @default.
- W4377966300 hasAuthorship W4377966300A5020035897 @default.
- W4377966300 hasAuthorship W4377966300A5027288861 @default.
- W4377966300 hasAuthorship W4377966300A5037066469 @default.
- W4377966300 hasAuthorship W4377966300A5055417775 @default.
- W4377966300 hasAuthorship W4377966300A5057485967 @default.
- W4377966300 hasAuthorship W4377966300A5064842058 @default.
- W4377966300 hasAuthorship W4377966300A5071277793 @default.
- W4377966300 hasConcept C111368507 @default.
- W4377966300 hasConcept C127313418 @default.
- W4377966300 hasConcept C127413603 @default.
- W4377966300 hasConcept C138885662 @default.
- W4377966300 hasConcept C154945302 @default.
- W4377966300 hasConcept C159985019 @default.
- W4377966300 hasConcept C168056786 @default.
- W4377966300 hasConcept C192562407 @default.
- W4377966300 hasConcept C202444582 @default.
- W4377966300 hasConcept C204366326 @default.
- W4377966300 hasConcept C2776401178 @default.
- W4377966300 hasConcept C2778713851 @default.
- W4377966300 hasConcept C33923547 @default.
- W4377966300 hasConcept C41008148 @default.
- W4377966300 hasConcept C41895202 @default.
- W4377966300 hasConcept C50644808 @default.
- W4377966300 hasConcept C66938386 @default.
- W4377966300 hasConcept C76893819 @default.
- W4377966300 hasConcept C81363708 @default.
- W4377966300 hasConcept C9652623 @default.
- W4377966300 hasConceptScore W4377966300C111368507 @default.
- W4377966300 hasConceptScore W4377966300C127313418 @default.
- W4377966300 hasConceptScore W4377966300C127413603 @default.
- W4377966300 hasConceptScore W4377966300C138885662 @default.