Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377968247> ?p ?o ?g. }
- W4377968247 abstract "Large language models (LLMs) have greatly enhanced our ability to understand biology and chemistry. Yet, relatively few robust methods have been reported for structure-based drug discovery. Highly precise biomolecule-ligand interaction datasets are urgently needed in particular for LLMs, that require extensive training data. We present MISATO, the first dataset that combines quantum mechanics properties of small molecules and associated molecular dynamics simulations of about 20000 experimental protein-ligand complexes. Starting from the PDBbind dataset, semi-empirical quantum mechanics was used to systematically refine these structures. The largest collection to date of molecular dynamics traces of protein-ligand complexes in explicit water are included, accumulating to 170 μs. We give ML baseline models and simple Python data loaders, and aim to foster a thriving community around MISATO ( https://github.com/t7morgen/misato-dataset ). An easy entry point for ML experts is provided without the need of deep domain expertise to enable the next generation of drug discovery AI models." @default.
- W4377968247 created "2023-05-25" @default.
- W4377968247 creator A5002943706 @default.
- W4377968247 creator A5005966038 @default.
- W4377968247 creator A5027223809 @default.
- W4377968247 creator A5034240894 @default.
- W4377968247 creator A5044354384 @default.
- W4377968247 creator A5046686387 @default.
- W4377968247 creator A5053642050 @default.
- W4377968247 creator A5068735853 @default.
- W4377968247 creator A5092007954 @default.
- W4377968247 date "2023-05-24" @default.
- W4377968247 modified "2023-10-09" @default.
- W4377968247 title "MISATO - Machine learning dataset of protein-ligand complexes for structure-based drug discovery" @default.
- W4377968247 cites W1976499671 @default.
- W4377968247 cites W1986814683 @default.
- W4377968247 cites W1988576626 @default.
- W4377968247 cites W1993046136 @default.
- W4377968247 cites W1995808589 @default.
- W4377968247 cites W2028046413 @default.
- W4377968247 cites W2030286884 @default.
- W4377968247 cites W2031240265 @default.
- W4377968247 cites W2034954692 @default.
- W4377968247 cites W2037149736 @default.
- W4377968247 cites W2037535298 @default.
- W4377968247 cites W2049369429 @default.
- W4377968247 cites W2050470003 @default.
- W4377968247 cites W2051381895 @default.
- W4377968247 cites W2065812641 @default.
- W4377968247 cites W2073685932 @default.
- W4377968247 cites W2075093176 @default.
- W4377968247 cites W2077973224 @default.
- W4377968247 cites W2081396007 @default.
- W4377968247 cites W2091064370 @default.
- W4377968247 cites W2093893381 @default.
- W4377968247 cites W2096864392 @default.
- W4377968247 cites W2097606916 @default.
- W4377968247 cites W2099805477 @default.
- W4377968247 cites W2112411768 @default.
- W4377968247 cites W2134967712 @default.
- W4377968247 cites W2146465875 @default.
- W4377968247 cites W2147993766 @default.
- W4377968247 cites W2149779504 @default.
- W4377968247 cites W2169678694 @default.
- W4377968247 cites W2225014237 @default.
- W4377968247 cites W2305293558 @default.
- W4377968247 cites W2337403656 @default.
- W4377968247 cites W2413334978 @default.
- W4377968247 cites W2490695247 @default.
- W4377968247 cites W2549829487 @default.
- W4377968247 cites W2589236205 @default.
- W4377968247 cites W2765125567 @default.
- W4377968247 cites W2767711842 @default.
- W4377968247 cites W2784213390 @default.
- W4377968247 cites W2785947426 @default.
- W4377968247 cites W2788282464 @default.
- W4377968247 cites W2795078408 @default.
- W4377968247 cites W2804171113 @default.
- W4377968247 cites W2809216727 @default.
- W4377968247 cites W2892113269 @default.
- W4377968247 cites W2895884529 @default.
- W4377968247 cites W2911997094 @default.
- W4377968247 cites W2913595764 @default.
- W4377968247 cites W2936033307 @default.
- W4377968247 cites W2954094311 @default.
- W4377968247 cites W2972608805 @default.
- W4377968247 cites W2990689232 @default.
- W4377968247 cites W3001433048 @default.
- W4377968247 cites W3005043246 @default.
- W4377968247 cites W3020097213 @default.
- W4377968247 cites W3021453944 @default.
- W4377968247 cites W3104705366 @default.
- W4377968247 cites W3177828909 @default.
- W4377968247 cites W4210307613 @default.
- W4377968247 cites W4220933119 @default.
- W4377968247 cites W4281381643 @default.
- W4377968247 cites W4286500588 @default.
- W4377968247 cites W4287512175 @default.
- W4377968247 cites W4289964347 @default.
- W4377968247 cites W4294884038 @default.
- W4377968247 cites W4366823237 @default.
- W4377968247 doi "https://doi.org/10.1101/2023.05.24.542082" @default.
- W4377968247 hasPublicationYear "2023" @default.
- W4377968247 type Work @default.
- W4377968247 citedByCount "0" @default.
- W4377968247 crossrefType "posted-content" @default.
- W4377968247 hasAuthorship W4377968247A5002943706 @default.
- W4377968247 hasAuthorship W4377968247A5005966038 @default.
- W4377968247 hasAuthorship W4377968247A5027223809 @default.
- W4377968247 hasAuthorship W4377968247A5034240894 @default.
- W4377968247 hasAuthorship W4377968247A5044354384 @default.
- W4377968247 hasAuthorship W4377968247A5046686387 @default.
- W4377968247 hasAuthorship W4377968247A5053642050 @default.
- W4377968247 hasAuthorship W4377968247A5068735853 @default.
- W4377968247 hasAuthorship W4377968247A5092007954 @default.
- W4377968247 hasBestOaLocation W43779682471 @default.
- W4377968247 hasConcept C199360897 @default.
- W4377968247 hasConcept C2522767166 @default.
- W4377968247 hasConcept C41008148 @default.
- W4377968247 hasConcept C519991488 @default.