Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377970432> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4377970432 abstract "Globally, more than 19,000 fungi are reported to infect agricultural crops with diseases. As the supplier of human energy, crops are seen as being significant. Plant diseases can harm leaves at any point during planting and harvest, greatly reducing crop productivity and the general market’s financial worth. Consequently, the early diagnosis of leaf disease is crucial in farmlands. Agriculture profitability is a key factor in economic growth. This is among the causes why plant disease identification is crucial in the farming sector, as the presence of illness in plants is extremely common. If necessary precautions aren’t followed in these regions, plants suffer major consequences, which impact the grade, volume, or production of the corresponding products. For example, the United States has pine trees that are susceptible to a dangerous illness called small-leaf disease and the backbone of the Indian economy is crop plants. It is advantageous to diagnose plant diseases (Black Spot, other leaf spots, powdery mildew, downy mildew, blight, and canker) using an automated method since it lessens the amount of manpower required to maintain megafarms of crops and does so at an incredibly preliminary phase(when they appear on plant leaves). The computerized identification and classification of plant leaf diseases using an imagery segmented system is presented in this work. It also includes an overview of various disease categorization methods that can be applied to the identification of plant leaf diseases. In order to detect disorders in diverse plant leaves, this study provides a review of diverse plant diseases and several classifying algorithms in deep machine learning." @default.
- W4377970432 created "2023-05-25" @default.
- W4377970432 creator A5015428040 @default.
- W4377970432 creator A5016469157 @default.
- W4377970432 creator A5028271309 @default.
- W4377970432 creator A5045537550 @default.
- W4377970432 creator A5055904220 @default.
- W4377970432 creator A5058780778 @default.
- W4377970432 date "2023-01-23" @default.
- W4377970432 modified "2023-10-18" @default.
- W4377970432 title "Multi-Plant and Multi-Crop Leaf Disease Detection and Classification using Deep Neural Networks, Machine Learning, Image Processing with Precision Agriculture - A Review" @default.
- W4377970432 cites W1983188312 @default.
- W4377970432 cites W1991424147 @default.
- W4377970432 cites W2019610851 @default.
- W4377970432 cites W2026460760 @default.
- W4377970432 cites W2318718345 @default.
- W4377970432 cites W2322878586 @default.
- W4377970432 cites W2340137774 @default.
- W4377970432 cites W2536452926 @default.
- W4377970432 cites W2770103218 @default.
- W4377970432 cites W2804443410 @default.
- W4377970432 cites W2809045324 @default.
- W4377970432 cites W2886555888 @default.
- W4377970432 cites W2949060638 @default.
- W4377970432 cites W2966928541 @default.
- W4377970432 cites W2997435144 @default.
- W4377970432 cites W3095722810 @default.
- W4377970432 cites W3111432325 @default.
- W4377970432 cites W3117368030 @default.
- W4377970432 cites W3159001133 @default.
- W4377970432 cites W3168123399 @default.
- W4377970432 cites W3185992107 @default.
- W4377970432 cites W4205329362 @default.
- W4377970432 cites W4283737877 @default.
- W4377970432 cites W4289523942 @default.
- W4377970432 cites W4296197501 @default.
- W4377970432 cites W4310623152 @default.
- W4377970432 cites W4312945424 @default.
- W4377970432 doi "https://doi.org/10.1109/iccci56745.2023.10128246" @default.
- W4377970432 hasPublicationYear "2023" @default.
- W4377970432 type Work @default.
- W4377970432 citedByCount "0" @default.
- W4377970432 crossrefType "proceedings-article" @default.
- W4377970432 hasAuthorship W4377970432A5015428040 @default.
- W4377970432 hasAuthorship W4377970432A5016469157 @default.
- W4377970432 hasAuthorship W4377970432A5028271309 @default.
- W4377970432 hasAuthorship W4377970432A5045537550 @default.
- W4377970432 hasAuthorship W4377970432A5055904220 @default.
- W4377970432 hasAuthorship W4377970432A5058780778 @default.
- W4377970432 hasConcept C116834253 @default.
- W4377970432 hasConcept C118518473 @default.
- W4377970432 hasConcept C137580998 @default.
- W4377970432 hasConcept C150903083 @default.
- W4377970432 hasConcept C154945302 @default.
- W4377970432 hasConcept C182076605 @default.
- W4377970432 hasConcept C18903297 @default.
- W4377970432 hasConcept C2779336322 @default.
- W4377970432 hasConcept C2780034373 @default.
- W4377970432 hasConcept C2780087670 @default.
- W4377970432 hasConcept C3019235130 @default.
- W4377970432 hasConcept C41008148 @default.
- W4377970432 hasConcept C59822182 @default.
- W4377970432 hasConcept C6557445 @default.
- W4377970432 hasConcept C86803240 @default.
- W4377970432 hasConceptScore W4377970432C116834253 @default.
- W4377970432 hasConceptScore W4377970432C118518473 @default.
- W4377970432 hasConceptScore W4377970432C137580998 @default.
- W4377970432 hasConceptScore W4377970432C150903083 @default.
- W4377970432 hasConceptScore W4377970432C154945302 @default.
- W4377970432 hasConceptScore W4377970432C182076605 @default.
- W4377970432 hasConceptScore W4377970432C18903297 @default.
- W4377970432 hasConceptScore W4377970432C2779336322 @default.
- W4377970432 hasConceptScore W4377970432C2780034373 @default.
- W4377970432 hasConceptScore W4377970432C2780087670 @default.
- W4377970432 hasConceptScore W4377970432C3019235130 @default.
- W4377970432 hasConceptScore W4377970432C41008148 @default.
- W4377970432 hasConceptScore W4377970432C59822182 @default.
- W4377970432 hasConceptScore W4377970432C6557445 @default.
- W4377970432 hasConceptScore W4377970432C86803240 @default.
- W4377970432 hasLocation W43779704321 @default.
- W4377970432 hasOpenAccess W4377970432 @default.
- W4377970432 hasPrimaryLocation W43779704321 @default.
- W4377970432 hasRelatedWork W1586695295 @default.
- W4377970432 hasRelatedWork W2035310916 @default.
- W4377970432 hasRelatedWork W2069645110 @default.
- W4377970432 hasRelatedWork W2139002052 @default.
- W4377970432 hasRelatedWork W2329284010 @default.
- W4377970432 hasRelatedWork W2387681956 @default.
- W4377970432 hasRelatedWork W2991082400 @default.
- W4377970432 hasRelatedWork W3210714768 @default.
- W4377970432 hasRelatedWork W4387521006 @default.
- W4377970432 hasRelatedWork W2959764853 @default.
- W4377970432 isParatext "false" @default.
- W4377970432 isRetracted "false" @default.
- W4377970432 workType "article" @default.