Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377981772> ?p ?o ?g. }
- W4377981772 endingPage "106414" @default.
- W4377981772 startingPage "106414" @default.
- W4377981772 abstract "Fetal heart monitoring and early disease detection using non-invasive fetal electrocardiograms (fECG) can help substantially to reduce infant death through improved diagnosis of Coronary Heart Disease (CHD) in the fetus. Despite the potential benefits, non-invasive fECG extraction from maternal abdominal ECG (mECG) is a challenging problem due to multiple factors such as the overlap of maternal and fetal R-peaks, low amplitude of fECG, and various systematic and environmental noises. Conventional fECG extraction techniques, such as adaptive filters, independent component analysis (ICA), empirical mode decomposition (EMD), etc., face various performance issues due to the fECG extraction challenges. In this paper, we proposed a novel deep learning architecture, LinkNet++ (motivated by the original LinkNet) to extract fECG from abdominal mECG automatically and efficiently using two different publicly available datasets. LinkNet++ is equipped with a feature-addition method to combine deep and shallow levels with residual blocks to overcome the limitations of U-Net and UNet++ models. It also has deep supervised and densely connected convolution blocks to overcome the limitations of the original LinkNet. The proposed LinkNet++ model was evaluated using fECG signal reconstruction and fetal QRS (fQRS) detection. As a signal-to-signal synthesis model, LinkNet++ performed very well in two real-life datasets and achieved 85.58% and 87.60% Pearson correlation coefficients (PCC) between the ground truth and predicted fECG on two datasets, respectively. In terms of fQRS detection, it also outperformed most of the previous works and showed excellent performance with more than 99% of F1 scores on both datasets. Our results indicate that the proposed model can potentially extract fECG non-invasively with excellent signal quality, thereby providing an excellent diagnostic tool for various fetal heart diseases." @default.
- W4377981772 created "2023-05-25" @default.
- W4377981772 creator A5003290346 @default.
- W4377981772 creator A5021566337 @default.
- W4377981772 creator A5028434107 @default.
- W4377981772 creator A5030226104 @default.
- W4377981772 creator A5033515195 @default.
- W4377981772 creator A5046370055 @default.
- W4377981772 creator A5064486960 @default.
- W4377981772 creator A5066703345 @default.
- W4377981772 creator A5084790378 @default.
- W4377981772 date "2023-08-01" @default.
- W4377981772 modified "2023-09-30" @default.
- W4377981772 title "Fetal ECG extraction from maternal ECG using deeply supervised LinkNet++ model" @default.
- W4377981772 cites W1491697777 @default.
- W4377981772 cites W1992397369 @default.
- W4377981772 cites W2009520139 @default.
- W4377981772 cites W2025641161 @default.
- W4377981772 cites W2028643935 @default.
- W4377981772 cites W2106563762 @default.
- W4377981772 cites W2162273778 @default.
- W4377981772 cites W2339576539 @default.
- W4377981772 cites W2395078443 @default.
- W4377981772 cites W2589516350 @default.
- W4377981772 cites W2774320778 @default.
- W4377981772 cites W2790139067 @default.
- W4377981772 cites W2802945731 @default.
- W4377981772 cites W2808757684 @default.
- W4377981772 cites W2940868118 @default.
- W4377981772 cites W2947659587 @default.
- W4377981772 cites W2967755079 @default.
- W4377981772 cites W2979163272 @default.
- W4377981772 cites W2980700241 @default.
- W4377981772 cites W2987239673 @default.
- W4377981772 cites W2995609036 @default.
- W4377981772 cites W2996290406 @default.
- W4377981772 cites W3012205022 @default.
- W4377981772 cites W3036313177 @default.
- W4377981772 cites W3147450857 @default.
- W4377981772 cites W3171411730 @default.
- W4377981772 cites W3174884537 @default.
- W4377981772 cites W3182487637 @default.
- W4377981772 cites W3192358943 @default.
- W4377981772 cites W3200597478 @default.
- W4377981772 cites W3202835798 @default.
- W4377981772 cites W3207478683 @default.
- W4377981772 cites W3208736206 @default.
- W4377981772 cites W3211191383 @default.
- W4377981772 cites W3213530928 @default.
- W4377981772 cites W4225435650 @default.
- W4377981772 cites W4297176686 @default.
- W4377981772 cites W78020899 @default.
- W4377981772 doi "https://doi.org/10.1016/j.engappai.2023.106414" @default.
- W4377981772 hasPublicationYear "2023" @default.
- W4377981772 type Work @default.
- W4377981772 citedByCount "0" @default.
- W4377981772 crossrefType "journal-article" @default.
- W4377981772 hasAuthorship W4377981772A5003290346 @default.
- W4377981772 hasAuthorship W4377981772A5021566337 @default.
- W4377981772 hasAuthorship W4377981772A5028434107 @default.
- W4377981772 hasAuthorship W4377981772A5030226104 @default.
- W4377981772 hasAuthorship W4377981772A5033515195 @default.
- W4377981772 hasAuthorship W4377981772A5046370055 @default.
- W4377981772 hasAuthorship W4377981772A5064486960 @default.
- W4377981772 hasAuthorship W4377981772A5066703345 @default.
- W4377981772 hasAuthorship W4377981772A5084790378 @default.
- W4377981772 hasConcept C108583219 @default.
- W4377981772 hasConcept C111773187 @default.
- W4377981772 hasConcept C119857082 @default.
- W4377981772 hasConcept C153180895 @default.
- W4377981772 hasConcept C154945302 @default.
- W4377981772 hasConcept C164705383 @default.
- W4377981772 hasConcept C199360897 @default.
- W4377981772 hasConcept C2779843651 @default.
- W4377981772 hasConcept C41008148 @default.
- W4377981772 hasConcept C52622490 @default.
- W4377981772 hasConcept C71924100 @default.
- W4377981772 hasConceptScore W4377981772C108583219 @default.
- W4377981772 hasConceptScore W4377981772C111773187 @default.
- W4377981772 hasConceptScore W4377981772C119857082 @default.
- W4377981772 hasConceptScore W4377981772C153180895 @default.
- W4377981772 hasConceptScore W4377981772C154945302 @default.
- W4377981772 hasConceptScore W4377981772C164705383 @default.
- W4377981772 hasConceptScore W4377981772C199360897 @default.
- W4377981772 hasConceptScore W4377981772C2779843651 @default.
- W4377981772 hasConceptScore W4377981772C41008148 @default.
- W4377981772 hasConceptScore W4377981772C52622490 @default.
- W4377981772 hasConceptScore W4377981772C71924100 @default.
- W4377981772 hasLocation W43779817721 @default.
- W4377981772 hasOpenAccess W4377981772 @default.
- W4377981772 hasPrimaryLocation W43779817721 @default.
- W4377981772 hasRelatedWork W2795261237 @default.
- W4377981772 hasRelatedWork W3014300295 @default.
- W4377981772 hasRelatedWork W3164822677 @default.
- W4377981772 hasRelatedWork W4223943233 @default.
- W4377981772 hasRelatedWork W4225161397 @default.
- W4377981772 hasRelatedWork W4312200629 @default.
- W4377981772 hasRelatedWork W4360585206 @default.