Matches in SemOpenAlex for { <https://semopenalex.org/work/W4377990211> ?p ?o ?g. }
- W4377990211 endingPage "3081" @default.
- W4377990211 startingPage "3059" @default.
- W4377990211 abstract "Monitoring and mapping vegetation dynamics using remote sensing data are essential for our understanding of land surface processes. Most current satellite-based methods process vegetation index time-series data from a series of images to retrieve key points that correspond to vegetation phenophases. As deep learning approaches have been found to be powerful in processing individual images, we tested the applicability of convolutional neural network (CNN) in mapping vegetation growth days (VGD) and the start of growing season (SOS) from each Landsat image at fine-spatial-resolution. To provide references for both model training and testing, we applied the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to fuse image pairs of Landsat 8 Operational Land Imager (OLI) and Moderate-resolution Imaging Spectroradiometer (MODIS) for four Landsat tiles in China. We then applied a first derivative method to retrieve VGD for the fused satellite data at fine-spatial-resolution. The CNN model was trained using each fused individual image as the model inputs and derived VGD as the targets. The trained model was further used to map VGD from individual Landsat image. The result could match the reference map well as indicated by the evaluation metrics. In terms of VGD, the method achieved a coefficient of determination of 0.85 and a root mean squared error of 8.17 days. In terms of SOS, the method achieved a coefficient of determination of 0.75 and a root mean squared error of 4.09 days. Compared with existing methods that require time series of satellite data spanning the entire growth cycles to retrieve phenological metrics, this study provides an alternative method to map VGD as well as SOS using individual Landsat image. Our study highlights the power of deep learning models in extracting phenological features from individual remote sensing images. Researchers can use our methods to predict near real-time VGD and SOS in the future." @default.
- W4377990211 created "2023-05-25" @default.
- W4377990211 creator A5002433301 @default.
- W4377990211 creator A5023152887 @default.
- W4377990211 creator A5030654256 @default.
- W4377990211 creator A5057519471 @default.
- W4377990211 creator A5075905191 @default.
- W4377990211 date "2023-05-03" @default.
- W4377990211 modified "2023-10-17" @default.
- W4377990211 title "Mapping fine-spatial-resolution vegetation spring phenology from individual Landsat images using a convolutional neural network" @default.
- W4377990211 cites W1966711117 @default.
- W4377990211 cites W1985864794 @default.
- W4377990211 cites W2018636632 @default.
- W4377990211 cites W2024649846 @default.
- W4377990211 cites W2027690707 @default.
- W4377990211 cites W2030688147 @default.
- W4377990211 cites W2035234551 @default.
- W4377990211 cites W2043604544 @default.
- W4377990211 cites W2043839818 @default.
- W4377990211 cites W2051662511 @default.
- W4377990211 cites W2055834782 @default.
- W4377990211 cites W2056811372 @default.
- W4377990211 cites W2061422248 @default.
- W4377990211 cites W2072093516 @default.
- W4377990211 cites W2074222846 @default.
- W4377990211 cites W2080196219 @default.
- W4377990211 cites W2082742619 @default.
- W4377990211 cites W2088603520 @default.
- W4377990211 cites W2099698780 @default.
- W4377990211 cites W2113503197 @default.
- W4377990211 cites W2114313289 @default.
- W4377990211 cites W2132874271 @default.
- W4377990211 cites W2133501143 @default.
- W4377990211 cites W2138751033 @default.
- W4377990211 cites W2146501057 @default.
- W4377990211 cites W2171596141 @default.
- W4377990211 cites W2200350976 @default.
- W4377990211 cites W2344321674 @default.
- W4377990211 cites W2344866513 @default.
- W4377990211 cites W2372903769 @default.
- W4377990211 cites W2514340250 @default.
- W4377990211 cites W2522055505 @default.
- W4377990211 cites W2757734040 @default.
- W4377990211 cites W2795018073 @default.
- W4377990211 cites W2802758852 @default.
- W4377990211 cites W2901633508 @default.
- W4377990211 cites W2914985931 @default.
- W4377990211 cites W2921277556 @default.
- W4377990211 cites W2938854198 @default.
- W4377990211 cites W2999347784 @default.
- W4377990211 cites W3003496990 @default.
- W4377990211 cites W3007054076 @default.
- W4377990211 cites W3037820092 @default.
- W4377990211 cites W3043407131 @default.
- W4377990211 cites W3084236801 @default.
- W4377990211 cites W3093945933 @default.
- W4377990211 cites W3105409087 @default.
- W4377990211 cites W3124539583 @default.
- W4377990211 cites W3171918282 @default.
- W4377990211 cites W3194307812 @default.
- W4377990211 cites W4213425069 @default.
- W4377990211 doi "https://doi.org/10.1080/01431161.2023.2216846" @default.
- W4377990211 hasPublicationYear "2023" @default.
- W4377990211 type Work @default.
- W4377990211 citedByCount "0" @default.
- W4377990211 crossrefType "journal-article" @default.
- W4377990211 hasAuthorship W4377990211A5002433301 @default.
- W4377990211 hasAuthorship W4377990211A5023152887 @default.
- W4377990211 hasAuthorship W4377990211A5030654256 @default.
- W4377990211 hasAuthorship W4377990211A5057519471 @default.
- W4377990211 hasAuthorship W4377990211A5075905191 @default.
- W4377990211 hasConcept C105795698 @default.
- W4377990211 hasConcept C127413603 @default.
- W4377990211 hasConcept C139945424 @default.
- W4377990211 hasConcept C142724271 @default.
- W4377990211 hasConcept C146978453 @default.
- W4377990211 hasConcept C1549246 @default.
- W4377990211 hasConcept C154945302 @default.
- W4377990211 hasConcept C18903297 @default.
- W4377990211 hasConcept C19269812 @default.
- W4377990211 hasConcept C205372480 @default.
- W4377990211 hasConcept C205649164 @default.
- W4377990211 hasConcept C25989453 @default.
- W4377990211 hasConcept C2776133958 @default.
- W4377990211 hasConcept C2777007095 @default.
- W4377990211 hasConcept C2778102629 @default.
- W4377990211 hasConcept C33923547 @default.
- W4377990211 hasConcept C39432304 @default.
- W4377990211 hasConcept C41008148 @default.
- W4377990211 hasConcept C50644808 @default.
- W4377990211 hasConcept C62649853 @default.
- W4377990211 hasConcept C71924100 @default.
- W4377990211 hasConcept C81363708 @default.
- W4377990211 hasConcept C86803240 @default.
- W4377990211 hasConceptScore W4377990211C105795698 @default.
- W4377990211 hasConceptScore W4377990211C127413603 @default.
- W4377990211 hasConceptScore W4377990211C139945424 @default.
- W4377990211 hasConceptScore W4377990211C142724271 @default.