Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378071390> ?p ?o ?g. }
- W4378071390 endingPage "61928" @default.
- W4378071390 startingPage "61914" @default.
- W4378071390 abstract "This study investigated the potential of recognising arousal in motor activity collected by wrist-worn accelerometers. We hypothesise that emotional arousal emerges from the generalised central nervous system which embeds affective states within motor activity. We formulate arousal detection as a statistical problem of separating two sets - motor activity under emotional arousal and motor activity without arousal. We propose a novel test regime based on machine learning assuming that the two sets can be distinguished if a machine learning classifier can separate the sets better than random guessing. To increase the statistical power of the testing regime, the performance of the classifiers is evaluated in a cross-validation framework, and to test if the classifiers perform better than random guessing, a repeated cross-validation corrected t-test is used. The classifiers were evaluated on the basis of accuracy and Matthew’s correlation coefficient. The suggested procedures were further compared against a traditional multivariate paired Hotelling’s T-squared test. The classifiers achieved an accuracy of about 60%, and according to the proposed t-test were significantly better than random guessing. The suggested test regime demonstrated higher statistical power than Hotelling’s T-squared test, and we conclude that we can distinguish between motor activity under emotional arousal and without it." @default.
- W4378071390 created "2023-05-25" @default.
- W4378071390 creator A5001144517 @default.
- W4378071390 creator A5013915265 @default.
- W4378071390 creator A5040037938 @default.
- W4378071390 creator A5049069834 @default.
- W4378071390 creator A5077303117 @default.
- W4378071390 creator A5081703948 @default.
- W4378071390 creator A5088962741 @default.
- W4378071390 date "2023-01-01" @default.
- W4378071390 modified "2023-09-27" @default.
- W4378071390 title "Affect Recognition in Muscular Response Signals" @default.
- W4378071390 cites W1540240814 @default.
- W4378071390 cites W1963753144 @default.
- W4378071390 cites W1964940342 @default.
- W4378071390 cites W1966797434 @default.
- W4378071390 cites W1984922580 @default.
- W4378071390 cites W1985867508 @default.
- W4378071390 cites W1994405094 @default.
- W4378071390 cites W1994518960 @default.
- W4378071390 cites W2002055708 @default.
- W4378071390 cites W2021913835 @default.
- W4378071390 cites W2047892647 @default.
- W4378071390 cites W2052431898 @default.
- W4378071390 cites W2053154970 @default.
- W4378071390 cites W2073792037 @default.
- W4378071390 cites W2083021723 @default.
- W4378071390 cites W2095820027 @default.
- W4378071390 cites W2097340087 @default.
- W4378071390 cites W2103223087 @default.
- W4378071390 cites W2132549764 @default.
- W4378071390 cites W2134031328 @default.
- W4378071390 cites W2134050473 @default.
- W4378071390 cites W2140785063 @default.
- W4378071390 cites W2151076348 @default.
- W4378071390 cites W2164368909 @default.
- W4378071390 cites W2172157122 @default.
- W4378071390 cites W2232827647 @default.
- W4378071390 cites W2294467024 @default.
- W4378071390 cites W2401205716 @default.
- W4378071390 cites W2505400317 @default.
- W4378071390 cites W2546875627 @default.
- W4378071390 cites W2584561145 @default.
- W4378071390 cites W2604540847 @default.
- W4378071390 cites W2605781939 @default.
- W4378071390 cites W2742338588 @default.
- W4378071390 cites W2745497104 @default.
- W4378071390 cites W2786800217 @default.
- W4378071390 cites W2799041689 @default.
- W4378071390 cites W2893003095 @default.
- W4378071390 cites W2900739424 @default.
- W4378071390 cites W2946850873 @default.
- W4378071390 cites W2962905870 @default.
- W4378071390 cites W2974457857 @default.
- W4378071390 cites W2975256032 @default.
- W4378071390 cites W2999309192 @default.
- W4378071390 cites W3003908700 @default.
- W4378071390 cites W3080735827 @default.
- W4378071390 cites W3098017922 @default.
- W4378071390 cites W3166926169 @default.
- W4378071390 cites W3178186370 @default.
- W4378071390 cites W332128417 @default.
- W4378071390 cites W4210616753 @default.
- W4378071390 cites W4210954222 @default.
- W4378071390 cites W4225572737 @default.
- W4378071390 cites W4230277160 @default.
- W4378071390 cites W4249224151 @default.
- W4378071390 cites W4252713891 @default.
- W4378071390 cites W4253751021 @default.
- W4378071390 cites W4294214983 @default.
- W4378071390 cites W4297540751 @default.
- W4378071390 cites W4312979080 @default.
- W4378071390 doi "https://doi.org/10.1109/access.2023.3279720" @default.
- W4378071390 hasPublicationYear "2023" @default.
- W4378071390 type Work @default.
- W4378071390 citedByCount "0" @default.
- W4378071390 crossrefType "journal-article" @default.
- W4378071390 hasAuthorship W4378071390A5001144517 @default.
- W4378071390 hasAuthorship W4378071390A5013915265 @default.
- W4378071390 hasAuthorship W4378071390A5040037938 @default.
- W4378071390 hasAuthorship W4378071390A5049069834 @default.
- W4378071390 hasAuthorship W4378071390A5077303117 @default.
- W4378071390 hasAuthorship W4378071390A5081703948 @default.
- W4378071390 hasAuthorship W4378071390A5088962741 @default.
- W4378071390 hasBestOaLocation W43780713901 @default.
- W4378071390 hasConcept C105795698 @default.
- W4378071390 hasConcept C117220453 @default.
- W4378071390 hasConcept C119857082 @default.
- W4378071390 hasConcept C151730666 @default.
- W4378071390 hasConcept C153180895 @default.
- W4378071390 hasConcept C154945302 @default.
- W4378071390 hasConcept C15744967 @default.
- W4378071390 hasConcept C169760540 @default.
- W4378071390 hasConcept C2524010 @default.
- W4378071390 hasConcept C2777267654 @default.
- W4378071390 hasConcept C28490314 @default.
- W4378071390 hasConcept C33923547 @default.
- W4378071390 hasConcept C36951298 @default.