Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378082523> ?p ?o ?g. }
- W4378082523 endingPage "2712" @default.
- W4378082523 startingPage "2712" @default.
- W4378082523 abstract "Rockfall constitutes a major threat to the safety and sustainability of transport corridors bordered by rocky cliffs. This research introduces a new approach to rockfall susceptibility modeling for the identification of potential rockfall source zones. This is achieved by developing a data-driven model to assess the local slope morphological attributes with respect to the rock slope evolution processes. The ability to address “where” a rockfall is more likely to occur via the analysis of historical event inventories with respect to terrain attributes and to define the probability of a given area producing a rockfall is a critical advance toward effective transport corridor management. The availability of high-quality digital volumetric change detection products permits new developments in rockfall assessment and prediction. We explore the potential of simulating the conceptualization of slope-scale rockfall susceptibility modeling using computer power and artificial intelligence (AI). We employ advanced 3D computer vision algorithms for analyzing point clouds to interpret high-resolution digital observations capturing the rock slope evolution via long-term, LiDAR-based 3D differencing. The approach has been developed and tested on data from three rock slopes: two in Canada and one in the UK. The results indicate clear potential for AI advances to develop local susceptibility indicators from local geometry and learning from recent rockfall activity. The resultant models produce slope-wide rockfall susceptibility maps in high resolution, producing up to 75% agreement with validated occurrences." @default.
- W4378082523 created "2023-05-25" @default.
- W4378082523 creator A5000260601 @default.
- W4378082523 creator A5015500140 @default.
- W4378082523 creator A5019609063 @default.
- W4378082523 creator A5051429392 @default.
- W4378082523 creator A5061800286 @default.
- W4378082523 date "2023-05-23" @default.
- W4378082523 modified "2023-09-26" @default.
- W4378082523 title "Slope-Scale Rockfall Susceptibility Modeling as a 3D Computer Vision Problem" @default.
- W4378082523 cites W1978690828 @default.
- W4378082523 cites W2027254180 @default.
- W4378082523 cites W2028880637 @default.
- W4378082523 cites W2029324310 @default.
- W4378082523 cites W2036881582 @default.
- W4378082523 cites W2037402385 @default.
- W4378082523 cites W2044268959 @default.
- W4378082523 cites W2049598665 @default.
- W4378082523 cites W2060565253 @default.
- W4378082523 cites W2080134555 @default.
- W4378082523 cites W2089314377 @default.
- W4378082523 cites W2147555471 @default.
- W4378082523 cites W2187019651 @default.
- W4378082523 cites W2346388063 @default.
- W4378082523 cites W2477335591 @default.
- W4378082523 cites W2586629890 @default.
- W4378082523 cites W2793831793 @default.
- W4378082523 cites W2800605073 @default.
- W4378082523 cites W2806372340 @default.
- W4378082523 cites W2888416130 @default.
- W4378082523 cites W2892280973 @default.
- W4378082523 cites W2912673345 @default.
- W4378082523 cites W2965098473 @default.
- W4378082523 cites W2979750740 @default.
- W4378082523 cites W3003882269 @default.
- W4378082523 cites W3004090977 @default.
- W4378082523 cites W3013755715 @default.
- W4378082523 cites W3035109286 @default.
- W4378082523 cites W3039448353 @default.
- W4378082523 cites W3048990506 @default.
- W4378082523 cites W3104038589 @default.
- W4378082523 cites W3111745734 @default.
- W4378082523 cites W3147728000 @default.
- W4378082523 cites W3173420347 @default.
- W4378082523 cites W3186658911 @default.
- W4378082523 cites W3196844718 @default.
- W4378082523 cites W4237067774 @default.
- W4378082523 cites W4289519317 @default.
- W4378082523 cites W4293456719 @default.
- W4378082523 cites W4376848342 @default.
- W4378082523 doi "https://doi.org/10.3390/rs15112712" @default.
- W4378082523 hasPublicationYear "2023" @default.
- W4378082523 type Work @default.
- W4378082523 citedByCount "0" @default.
- W4378082523 crossrefType "journal-article" @default.
- W4378082523 hasAuthorship W4378082523A5000260601 @default.
- W4378082523 hasAuthorship W4378082523A5015500140 @default.
- W4378082523 hasAuthorship W4378082523A5019609063 @default.
- W4378082523 hasAuthorship W4378082523A5051429392 @default.
- W4378082523 hasAuthorship W4378082523A5061800286 @default.
- W4378082523 hasBestOaLocation W43780825231 @default.
- W4378082523 hasConcept C127313418 @default.
- W4378082523 hasConcept C161840515 @default.
- W4378082523 hasConcept C16674752 @default.
- W4378082523 hasConcept C181843262 @default.
- W4378082523 hasConcept C186295008 @default.
- W4378082523 hasConcept C187320778 @default.
- W4378082523 hasConcept C204665574 @default.
- W4378082523 hasConcept C205649164 @default.
- W4378082523 hasConcept C2778755073 @default.
- W4378082523 hasConcept C41008148 @default.
- W4378082523 hasConcept C58640448 @default.
- W4378082523 hasConcept C62649853 @default.
- W4378082523 hasConceptScore W4378082523C127313418 @default.
- W4378082523 hasConceptScore W4378082523C161840515 @default.
- W4378082523 hasConceptScore W4378082523C16674752 @default.
- W4378082523 hasConceptScore W4378082523C181843262 @default.
- W4378082523 hasConceptScore W4378082523C186295008 @default.
- W4378082523 hasConceptScore W4378082523C187320778 @default.
- W4378082523 hasConceptScore W4378082523C204665574 @default.
- W4378082523 hasConceptScore W4378082523C205649164 @default.
- W4378082523 hasConceptScore W4378082523C2778755073 @default.
- W4378082523 hasConceptScore W4378082523C41008148 @default.
- W4378082523 hasConceptScore W4378082523C58640448 @default.
- W4378082523 hasConceptScore W4378082523C62649853 @default.
- W4378082523 hasFunder F4320334593 @default.
- W4378082523 hasIssue "11" @default.
- W4378082523 hasLocation W43780825231 @default.
- W4378082523 hasOpenAccess W4378082523 @default.
- W4378082523 hasPrimaryLocation W43780825231 @default.
- W4378082523 hasRelatedWork W1558227781 @default.
- W4378082523 hasRelatedWork W1945051645 @default.
- W4378082523 hasRelatedWork W1974913876 @default.
- W4378082523 hasRelatedWork W1983886267 @default.
- W4378082523 hasRelatedWork W2002973738 @default.
- W4378082523 hasRelatedWork W2119746558 @default.
- W4378082523 hasRelatedWork W2136525700 @default.
- W4378082523 hasRelatedWork W3047022030 @default.