Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378085130> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4378085130 abstract "Abstract The integration of data‐driven models such as neural networks for high‐consequence decision making has been largely hindered by their lack of predictive power away from training data and their inability to quantify uncertainties often prevalent in engineering applications. This article presents an ensembling method with function‐space regularization, which allows to integrate prior information about the function of interest, thus improving generalization performance, while enabling quantification of aleatory and epistemic uncertainties. This framework is applied to build a probabilistic ambulance travel time predictor, leveraging historical ambulance data provided by the Fire Department of New York City. Results show that the integration of a non‐Gaussian likelihood and prior information from a road network analysis yields appropriate probabilistic predictions of travel times, which could be further leveraged for emergency medical service (EMS) decision making." @default.
- W4378085130 created "2023-05-25" @default.
- W4378085130 creator A5009832101 @default.
- W4378085130 creator A5025805379 @default.
- W4378085130 creator A5055945156 @default.
- W4378085130 creator A5056645088 @default.
- W4378085130 date "2023-05-22" @default.
- W4378085130 modified "2023-10-14" @default.
- W4378085130 title "Bayesian neural networks with physics‐aware regularization for probabilistic travel time modeling" @default.
- W4378085130 cites W1567512734 @default.
- W4378085130 cites W1577395830 @default.
- W4378085130 cites W1966543809 @default.
- W4378085130 cites W2021914902 @default.
- W4378085130 cites W2029486861 @default.
- W4378085130 cites W2050053010 @default.
- W4378085130 cites W2057664353 @default.
- W4378085130 cites W2144830515 @default.
- W4378085130 cites W2239838331 @default.
- W4378085130 cites W2295107390 @default.
- W4378085130 cites W2560647685 @default.
- W4378085130 cites W2587736284 @default.
- W4378085130 cites W2809128166 @default.
- W4378085130 cites W2809623940 @default.
- W4378085130 cites W2899283552 @default.
- W4378085130 cites W2900682747 @default.
- W4378085130 cites W2954040150 @default.
- W4378085130 cites W2962858109 @default.
- W4378085130 cites W2971705596 @default.
- W4378085130 cites W2997129641 @default.
- W4378085130 cites W3010849941 @default.
- W4378085130 cites W3080525044 @default.
- W4378085130 cites W3092231855 @default.
- W4378085130 cites W3097744168 @default.
- W4378085130 cites W3115020213 @default.
- W4378085130 cites W3159331633 @default.
- W4378085130 cites W3167256391 @default.
- W4378085130 cites W3194828218 @default.
- W4378085130 cites W3195348523 @default.
- W4378085130 cites W3197865258 @default.
- W4378085130 cites W3199931706 @default.
- W4378085130 cites W4200292243 @default.
- W4378085130 cites W4200336554 @default.
- W4378085130 cites W4213439521 @default.
- W4378085130 cites W4285604295 @default.
- W4378085130 cites W4289856754 @default.
- W4378085130 cites W4307123709 @default.
- W4378085130 cites W4321010173 @default.
- W4378085130 doi "https://doi.org/10.1111/mice.13047" @default.
- W4378085130 hasPublicationYear "2023" @default.
- W4378085130 type Work @default.
- W4378085130 citedByCount "0" @default.
- W4378085130 crossrefType "journal-article" @default.
- W4378085130 hasAuthorship W4378085130A5009832101 @default.
- W4378085130 hasAuthorship W4378085130A5025805379 @default.
- W4378085130 hasAuthorship W4378085130A5055945156 @default.
- W4378085130 hasAuthorship W4378085130A5056645088 @default.
- W4378085130 hasBestOaLocation W43780851301 @default.
- W4378085130 hasConcept C107673813 @default.
- W4378085130 hasConcept C119857082 @default.
- W4378085130 hasConcept C124101348 @default.
- W4378085130 hasConcept C134306372 @default.
- W4378085130 hasConcept C154945302 @default.
- W4378085130 hasConcept C177148314 @default.
- W4378085130 hasConcept C2776135515 @default.
- W4378085130 hasConcept C33923547 @default.
- W4378085130 hasConcept C41008148 @default.
- W4378085130 hasConcept C49937458 @default.
- W4378085130 hasConcept C50644808 @default.
- W4378085130 hasConceptScore W4378085130C107673813 @default.
- W4378085130 hasConceptScore W4378085130C119857082 @default.
- W4378085130 hasConceptScore W4378085130C124101348 @default.
- W4378085130 hasConceptScore W4378085130C134306372 @default.
- W4378085130 hasConceptScore W4378085130C154945302 @default.
- W4378085130 hasConceptScore W4378085130C177148314 @default.
- W4378085130 hasConceptScore W4378085130C2776135515 @default.
- W4378085130 hasConceptScore W4378085130C33923547 @default.
- W4378085130 hasConceptScore W4378085130C41008148 @default.
- W4378085130 hasConceptScore W4378085130C49937458 @default.
- W4378085130 hasConceptScore W4378085130C50644808 @default.
- W4378085130 hasLocation W43780851301 @default.
- W4378085130 hasOpenAccess W4378085130 @default.
- W4378085130 hasPrimaryLocation W43780851301 @default.
- W4378085130 hasRelatedWork W1630076647 @default.
- W4378085130 hasRelatedWork W1992324151 @default.
- W4378085130 hasRelatedWork W2048963458 @default.
- W4378085130 hasRelatedWork W2080152487 @default.
- W4378085130 hasRelatedWork W2120455979 @default.
- W4378085130 hasRelatedWork W2239445980 @default.
- W4378085130 hasRelatedWork W2359952343 @default.
- W4378085130 hasRelatedWork W2371138613 @default.
- W4378085130 hasRelatedWork W2922249299 @default.
- W4378085130 hasRelatedWork W43109613 @default.
- W4378085130 isParatext "false" @default.
- W4378085130 isRetracted "false" @default.
- W4378085130 workType "article" @default.