Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378085497> ?p ?o ?g. }
- W4378085497 abstract "Abstract Recognizing cars based on their features is a difficult task. We propose a solution that uses a convolutional neural network (CNN) and image binarization method for car make and model classification. Unlike many previous works in this area, we use a feature extraction method combined with a binarization method. In the first stage of the pre-processing part we normalize and change the size of an image. The image is then used to recognize where the rear-lamps are placed on the image. We extract the region and use the image binarization method. The binarized image is used as input to the CNN network that finds the features of a specific car model. We have tested the combinations of three different neural network architectures and eight binarization methods. The convolutional neural network with parameters of the highest quality metrics value is used to find the characteristics of the rear lamps on the binary image. The convolutional network is tested with four different gradient algorithms. We have tested the method on two data sets which differ in the way the images were taken. Each data set consists of three subsets of the same car, but is scaled to different image dimensions. Compared to related works that are based on CNN, we use rear view images in different position and light exposure. The proposed method gives better results compared to most available methods. It is also less complex, and faster to train compared to other methods. The proposed approach achieves an average accuracy of 93,9% on the first data set and 84,5% on the second set." @default.
- W4378085497 created "2023-05-25" @default.
- W4378085497 creator A5015117965 @default.
- W4378085497 creator A5057147481 @default.
- W4378085497 creator A5092013833 @default.
- W4378085497 date "2023-05-23" @default.
- W4378085497 modified "2023-09-30" @default.
- W4378085497 title "Car make and model recognition system using rear-lamp features and convolutional neural networks" @default.
- W4378085497 cites W1898560071 @default.
- W4378085497 cites W1924485039 @default.
- W4378085497 cites W1965470957 @default.
- W4378085497 cites W1977372648 @default.
- W4378085497 cites W1992636780 @default.
- W4378085497 cites W1996595210 @default.
- W4378085497 cites W1997661213 @default.
- W4378085497 cites W2014367093 @default.
- W4378085497 cites W2024603174 @default.
- W4378085497 cites W2040212551 @default.
- W4378085497 cites W2054256694 @default.
- W4378085497 cites W2066723731 @default.
- W4378085497 cites W2069428064 @default.
- W4378085497 cites W2083601800 @default.
- W4378085497 cites W2123203601 @default.
- W4378085497 cites W2126095558 @default.
- W4378085497 cites W2128060444 @default.
- W4378085497 cites W2132725786 @default.
- W4378085497 cites W2133059825 @default.
- W4378085497 cites W2134365368 @default.
- W4378085497 cites W2148089441 @default.
- W4378085497 cites W2148231952 @default.
- W4378085497 cites W2161514656 @default.
- W4378085497 cites W2179713099 @default.
- W4378085497 cites W2405089906 @default.
- W4378085497 cites W2475242006 @default.
- W4378085497 cites W2761909754 @default.
- W4378085497 cites W2901533770 @default.
- W4378085497 cites W2905879603 @default.
- W4378085497 cites W2917154014 @default.
- W4378085497 cites W2967060476 @default.
- W4378085497 cites W2970283086 @default.
- W4378085497 cites W2976814977 @default.
- W4378085497 cites W2983188006 @default.
- W4378085497 cites W2983559280 @default.
- W4378085497 cites W2986435640 @default.
- W4378085497 cites W3005648068 @default.
- W4378085497 cites W3016542838 @default.
- W4378085497 cites W3034503044 @default.
- W4378085497 cites W3037793940 @default.
- W4378085497 cites W3043613541 @default.
- W4378085497 cites W3047417463 @default.
- W4378085497 cites W4210512964 @default.
- W4378085497 cites W4256221580 @default.
- W4378085497 doi "https://doi.org/10.1007/s11042-023-15081-x" @default.
- W4378085497 hasPublicationYear "2023" @default.
- W4378085497 type Work @default.
- W4378085497 citedByCount "0" @default.
- W4378085497 crossrefType "journal-article" @default.
- W4378085497 hasAuthorship W4378085497A5015117965 @default.
- W4378085497 hasAuthorship W4378085497A5057147481 @default.
- W4378085497 hasAuthorship W4378085497A5092013833 @default.
- W4378085497 hasBestOaLocation W43780854971 @default.
- W4378085497 hasConcept C115961682 @default.
- W4378085497 hasConcept C138885662 @default.
- W4378085497 hasConcept C153180895 @default.
- W4378085497 hasConcept C154945302 @default.
- W4378085497 hasConcept C177264268 @default.
- W4378085497 hasConcept C193828747 @default.
- W4378085497 hasConcept C199360897 @default.
- W4378085497 hasConcept C2776401178 @default.
- W4378085497 hasConcept C31972630 @default.
- W4378085497 hasConcept C41008148 @default.
- W4378085497 hasConcept C41895202 @default.
- W4378085497 hasConcept C50644808 @default.
- W4378085497 hasConcept C52622490 @default.
- W4378085497 hasConcept C81363708 @default.
- W4378085497 hasConcept C9417928 @default.
- W4378085497 hasConceptScore W4378085497C115961682 @default.
- W4378085497 hasConceptScore W4378085497C138885662 @default.
- W4378085497 hasConceptScore W4378085497C153180895 @default.
- W4378085497 hasConceptScore W4378085497C154945302 @default.
- W4378085497 hasConceptScore W4378085497C177264268 @default.
- W4378085497 hasConceptScore W4378085497C193828747 @default.
- W4378085497 hasConceptScore W4378085497C199360897 @default.
- W4378085497 hasConceptScore W4378085497C2776401178 @default.
- W4378085497 hasConceptScore W4378085497C31972630 @default.
- W4378085497 hasConceptScore W4378085497C41008148 @default.
- W4378085497 hasConceptScore W4378085497C41895202 @default.
- W4378085497 hasConceptScore W4378085497C50644808 @default.
- W4378085497 hasConceptScore W4378085497C52622490 @default.
- W4378085497 hasConceptScore W4378085497C81363708 @default.
- W4378085497 hasConceptScore W4378085497C9417928 @default.
- W4378085497 hasLocation W43780854971 @default.
- W4378085497 hasOpenAccess W4378085497 @default.
- W4378085497 hasPrimaryLocation W43780854971 @default.
- W4378085497 hasRelatedWork W2059299633 @default.
- W4378085497 hasRelatedWork W2546942002 @default.
- W4378085497 hasRelatedWork W2732542196 @default.
- W4378085497 hasRelatedWork W2760085659 @default.
- W4378085497 hasRelatedWork W2767651786 @default.
- W4378085497 hasRelatedWork W2940977206 @default.