Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378174554> ?p ?o ?g. }
- W4378174554 endingPage "110415" @default.
- W4378174554 startingPage "110415" @default.
- W4378174554 abstract "Besides the complex effect of global warming on extreme events, spatiotemporal variability of natural phenomena often carries the legacy of anthropogenic activities. Moreover, any feedback induced by these activities on climate brings additional complexity when modelling natural events. For extreme values, climate or physiographic patterns often induce non stationarity, or long-term changes. In this context, parametric models may become inadequate given the complexity of the studied phenomena and their systematic changes through space and time. In this paper, we assess the use and ensuing efficiency of nonparametric machine learning (npML) methods to estimate and predict extreme values associated with natural events. These npML methods are compared to a commonly used parametric machine learning (pML) approach, the nonstationary frequency analysis model. We use a historical database compiling the frequency of harmful algal blooms (HAB) in Québec, Canada. Results show that a 19-covariate RFCDE model leads to the best mean estimate among the considered models. However, for low and large quantiles, the 4-covariate RCDE model provides better agreement between observed and simulated bloom frequencies. The models may be used to assess the effects of climate change and anthropogenic developments on the frequency of HAB. They may also be leveraged to measure the efficiency of mitigation scenarios and to identify priority areas for restoration plan strategies. Recommendations are finally made regarding the estimation of the conditional density to predict extreme values associated with natural events." @default.
- W4378174554 created "2023-05-26" @default.
- W4378174554 creator A5019912138 @default.
- W4378174554 creator A5052880626 @default.
- W4378174554 creator A5063580106 @default.
- W4378174554 creator A5070430884 @default.
- W4378174554 date "2023-08-01" @default.
- W4378174554 modified "2023-10-18" @default.
- W4378174554 title "Parametric versus nonparametric machine learning modelling for conditional density estimation of natural events: Application to harmful algal blooms" @default.
- W4378174554 cites W1510730483 @default.
- W4378174554 cites W1917097322 @default.
- W4378174554 cites W2000737187 @default.
- W4378174554 cites W2014675133 @default.
- W4378174554 cites W2027300184 @default.
- W4378174554 cites W2048487157 @default.
- W4378174554 cites W2068264411 @default.
- W4378174554 cites W2069628670 @default.
- W4378174554 cites W2079377422 @default.
- W4378174554 cites W2089395535 @default.
- W4378174554 cites W2105103805 @default.
- W4378174554 cites W2109167110 @default.
- W4378174554 cites W2113569175 @default.
- W4378174554 cites W2123716783 @default.
- W4378174554 cites W2138467337 @default.
- W4378174554 cites W2172148630 @default.
- W4378174554 cites W2190216678 @default.
- W4378174554 cites W2307215066 @default.
- W4378174554 cites W2560136348 @default.
- W4378174554 cites W2698083996 @default.
- W4378174554 cites W2793155954 @default.
- W4378174554 cites W2942228910 @default.
- W4378174554 cites W2951861274 @default.
- W4378174554 cites W2957895976 @default.
- W4378174554 cites W2970601210 @default.
- W4378174554 cites W2973860281 @default.
- W4378174554 cites W2979808541 @default.
- W4378174554 cites W3088171939 @default.
- W4378174554 cites W3120952719 @default.
- W4378174554 cites W3152196330 @default.
- W4378174554 cites W3189536878 @default.
- W4378174554 cites W4296903953 @default.
- W4378174554 doi "https://doi.org/10.1016/j.ecolmodel.2023.110415" @default.
- W4378174554 hasPublicationYear "2023" @default.
- W4378174554 type Work @default.
- W4378174554 citedByCount "0" @default.
- W4378174554 crossrefType "journal-article" @default.
- W4378174554 hasAuthorship W4378174554A5019912138 @default.
- W4378174554 hasAuthorship W4378174554A5052880626 @default.
- W4378174554 hasAuthorship W4378174554A5063580106 @default.
- W4378174554 hasAuthorship W4378174554A5070430884 @default.
- W4378174554 hasConcept C102366305 @default.
- W4378174554 hasConcept C105795698 @default.
- W4378174554 hasConcept C117251300 @default.
- W4378174554 hasConcept C118671147 @default.
- W4378174554 hasConcept C119043178 @default.
- W4378174554 hasConcept C119857082 @default.
- W4378174554 hasConcept C120305227 @default.
- W4378174554 hasConcept C127413603 @default.
- W4378174554 hasConcept C132651083 @default.
- W4378174554 hasConcept C142796444 @default.
- W4378174554 hasConcept C147581598 @default.
- W4378174554 hasConcept C149782125 @default.
- W4378174554 hasConcept C166957645 @default.
- W4378174554 hasConcept C18903297 @default.
- W4378174554 hasConcept C201995342 @default.
- W4378174554 hasConcept C205649164 @default.
- W4378174554 hasConcept C24574437 @default.
- W4378174554 hasConcept C2776608160 @default.
- W4378174554 hasConcept C2779343474 @default.
- W4378174554 hasConcept C2780892065 @default.
- W4378174554 hasConcept C33923547 @default.
- W4378174554 hasConcept C39432304 @default.
- W4378174554 hasConcept C41008148 @default.
- W4378174554 hasConcept C86803240 @default.
- W4378174554 hasConcept C96250715 @default.
- W4378174554 hasConceptScore W4378174554C102366305 @default.
- W4378174554 hasConceptScore W4378174554C105795698 @default.
- W4378174554 hasConceptScore W4378174554C117251300 @default.
- W4378174554 hasConceptScore W4378174554C118671147 @default.
- W4378174554 hasConceptScore W4378174554C119043178 @default.
- W4378174554 hasConceptScore W4378174554C119857082 @default.
- W4378174554 hasConceptScore W4378174554C120305227 @default.
- W4378174554 hasConceptScore W4378174554C127413603 @default.
- W4378174554 hasConceptScore W4378174554C132651083 @default.
- W4378174554 hasConceptScore W4378174554C142796444 @default.
- W4378174554 hasConceptScore W4378174554C147581598 @default.
- W4378174554 hasConceptScore W4378174554C149782125 @default.
- W4378174554 hasConceptScore W4378174554C166957645 @default.
- W4378174554 hasConceptScore W4378174554C18903297 @default.
- W4378174554 hasConceptScore W4378174554C201995342 @default.
- W4378174554 hasConceptScore W4378174554C205649164 @default.
- W4378174554 hasConceptScore W4378174554C24574437 @default.
- W4378174554 hasConceptScore W4378174554C2776608160 @default.
- W4378174554 hasConceptScore W4378174554C2779343474 @default.
- W4378174554 hasConceptScore W4378174554C2780892065 @default.
- W4378174554 hasConceptScore W4378174554C33923547 @default.
- W4378174554 hasConceptScore W4378174554C39432304 @default.
- W4378174554 hasConceptScore W4378174554C41008148 @default.