Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378174712> ?p ?o ?g. }
- W4378174712 endingPage "100093" @default.
- W4378174712 startingPage "100093" @default.
- W4378174712 abstract "Time-Frequency Distributions (TFDs) support the heart sound characterisation and classification in early cardiac screening. However, despite the frequent use of TFDs in signal analysis, no comprehensive study has been conducted to compare their performances in deep learning for automatic diagnosis. This study is the first to investigate and compare the optimal use of single/combined TFDs for heart sound classification using deep learning. The main contribution of this study is that it provides practical insights into the selection of TFDs as convolutional neural network (CNN) inputs and the design of CNN architecture for heart sound classification. The presented results revealed that: 1) The transformation of the heart sound signal into the TF domain achieves higher classification performance than using raw signal patterns as input. Overall, the difference in the performance was slight among the applied TFDs for all participated CNNs (within 1.3% in MAcc (average of sensitivity and specificity)). However, continuous wavelet transform (CWT) and Chirplet transform (CT) outperformed the rest (surpassing by approximately 0.5−1.3% in MAcc). 2) The appropriate increase of the CNN capacity and architecture optimisation can improve the performance, while the network architecture should not be overly complicated. Based on the results on ResNet or SEResNet, the increasing parameter number and the depth of the structure do not improve the performance apparently. 3) Combining TFDs as CNN inputs did not significantly improve the classification results. The results of this study provide valuable insights for researchers and practitioners in the field of automatic diagnosis of heart sounds with deep learning, particularly in selecting TFDs as CNN input and designing CNN architecture for heart sound classification." @default.
- W4378174712 created "2023-05-26" @default.
- W4378174712 creator A5013544163 @default.
- W4378174712 creator A5013855196 @default.
- W4378174712 creator A5020021758 @default.
- W4378174712 creator A5034037954 @default.
- W4378174712 creator A5040907529 @default.
- W4378174712 creator A5059514204 @default.
- W4378174712 creator A5079484792 @default.
- W4378174712 date "2023-06-01" @default.
- W4378174712 modified "2023-10-14" @default.
- W4378174712 title "Time-Frequency Distributions of Heart Sound Signals: A Comparative Study using Convolutional Neural Networks" @default.
- W4378174712 cites W1966425029 @default.
- W4378174712 cites W1987001343 @default.
- W4378174712 cites W2001374944 @default.
- W4378174712 cites W2010662891 @default.
- W4378174712 cites W2011972938 @default.
- W4378174712 cites W2051019440 @default.
- W4378174712 cites W2062550971 @default.
- W4378174712 cites W2067063385 @default.
- W4378174712 cites W2074079857 @default.
- W4378174712 cites W2101564280 @default.
- W4378174712 cites W2106587369 @default.
- W4378174712 cites W2113270742 @default.
- W4378174712 cites W2117539524 @default.
- W4378174712 cites W2117761544 @default.
- W4378174712 cites W2122136987 @default.
- W4378174712 cites W2122411056 @default.
- W4378174712 cites W2132568683 @default.
- W4378174712 cites W2149168670 @default.
- W4378174712 cites W2153892802 @default.
- W4378174712 cites W2167426485 @default.
- W4378174712 cites W2194660865 @default.
- W4378174712 cites W2194775991 @default.
- W4378174712 cites W2471933213 @default.
- W4378174712 cites W2557139718 @default.
- W4378174712 cites W2591914506 @default.
- W4378174712 cites W2593628220 @default.
- W4378174712 cites W2593812044 @default.
- W4378174712 cites W2594894714 @default.
- W4378174712 cites W2604465547 @default.
- W4378174712 cites W2623291382 @default.
- W4378174712 cites W2752782242 @default.
- W4378174712 cites W2758244442 @default.
- W4378174712 cites W2799149040 @default.
- W4378174712 cites W2809350318 @default.
- W4378174712 cites W2811161392 @default.
- W4378174712 cites W2886567266 @default.
- W4378174712 cites W2914767245 @default.
- W4378174712 cites W2922391660 @default.
- W4378174712 cites W2962781841 @default.
- W4378174712 cites W2962861284 @default.
- W4378174712 cites W2963446712 @default.
- W4378174712 cites W2963546301 @default.
- W4378174712 cites W2963652317 @default.
- W4378174712 cites W2963918968 @default.
- W4378174712 cites W2965318968 @default.
- W4378174712 cites W2966145183 @default.
- W4378174712 cites W2967189346 @default.
- W4378174712 cites W2982083293 @default.
- W4378174712 cites W2999809858 @default.
- W4378174712 cites W3004025693 @default.
- W4378174712 cites W3005067038 @default.
- W4378174712 cites W3042078158 @default.
- W4378174712 cites W3104464003 @default.
- W4378174712 cites W3116250684 @default.
- W4378174712 cites W3118354935 @default.
- W4378174712 cites W3152792492 @default.
- W4378174712 cites W3178317932 @default.
- W4378174712 cites W4214614581 @default.
- W4378174712 cites W4221136339 @default.
- W4378174712 cites W4294287015 @default.
- W4378174712 cites W4294975291 @default.
- W4378174712 doi "https://doi.org/10.1016/j.bea.2023.100093" @default.
- W4378174712 hasPublicationYear "2023" @default.
- W4378174712 type Work @default.
- W4378174712 citedByCount "0" @default.
- W4378174712 crossrefType "journal-article" @default.
- W4378174712 hasAuthorship W4378174712A5013544163 @default.
- W4378174712 hasAuthorship W4378174712A5013855196 @default.
- W4378174712 hasAuthorship W4378174712A5020021758 @default.
- W4378174712 hasAuthorship W4378174712A5034037954 @default.
- W4378174712 hasAuthorship W4378174712A5040907529 @default.
- W4378174712 hasAuthorship W4378174712A5059514204 @default.
- W4378174712 hasAuthorship W4378174712A5079484792 @default.
- W4378174712 hasBestOaLocation W43781747121 @default.
- W4378174712 hasConcept C104317684 @default.
- W4378174712 hasConcept C108583219 @default.
- W4378174712 hasConcept C127413603 @default.
- W4378174712 hasConcept C153180895 @default.
- W4378174712 hasConcept C154945302 @default.
- W4378174712 hasConcept C185592680 @default.
- W4378174712 hasConcept C196216189 @default.
- W4378174712 hasConcept C199360897 @default.
- W4378174712 hasConcept C204241405 @default.
- W4378174712 hasConcept C21200559 @default.
- W4378174712 hasConcept C24326235 @default.
- W4378174712 hasConcept C2779843651 @default.