Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378174996> ?p ?o ?g. }
- W4378174996 endingPage "212" @default.
- W4378174996 startingPage "196" @default.
- W4378174996 abstract "Computing the probability of an edge's existence in a graph network is known as link prediction. While traditional methods calculate the similarity between two given nodes in a static network, recent research has focused on evaluating networks that evolve dynamically. Although deep learning techniques and network representation learning algorithms, such as node2vec, show remarkable improvements in prediction accuracy, the Stochastic Gradient Descent (SGD) method of node2vec tends to fall into a mediocre local optimum value due to a shortage of prior network information, resulting in failure to capture the global structure of the network. To tackle this problem, we propose NODDLE (integration of NOde2vec anD Deep Learning mEthod), a deep learning model which incorporates the features extracted by node2vec and feeds them into a four layer hidden neural network. NODDLE takes advantage of adaptive learning optimizers such as Adam, Adamax, Adadelta, and Adagrad to improve the performance of link prediction. Experimental results show that this method yields better results than the traditional methods on various social network datasets." @default.
- W4378174996 created "2023-05-26" @default.
- W4378174996 creator A5004851252 @default.
- W4378174996 creator A5018574685 @default.
- W4378174996 creator A5026089310 @default.
- W4378174996 date "2023-01-01" @default.
- W4378174996 modified "2023-09-27" @default.
- W4378174996 title "NODDLE: Node2vec Based Deep Learning Model for Link Prediction" @default.
- W4378174996 cites W1651364045 @default.
- W4378174996 cites W1876253797 @default.
- W4378174996 cites W1963763787 @default.
- W4378174996 cites W1973938657 @default.
- W4378174996 cites W2007444087 @default.
- W4378174996 cites W2026417691 @default.
- W4378174996 cites W2034996255 @default.
- W4378174996 cites W2087742892 @default.
- W4378174996 cites W2118027753 @default.
- W4378174996 cites W2154454189 @default.
- W4378174996 cites W2188903853 @default.
- W4378174996 cites W2386195190 @default.
- W4378174996 cites W2506710798 @default.
- W4378174996 cites W2515462565 @default.
- W4378174996 cites W2521812403 @default.
- W4378174996 cites W2583739452 @default.
- W4378174996 cites W2604682274 @default.
- W4378174996 cites W2607776492 @default.
- W4378174996 cites W2610858834 @default.
- W4378174996 cites W2674731409 @default.
- W4378174996 cites W2700550412 @default.
- W4378174996 cites W2733511975 @default.
- W4378174996 cites W2734722833 @default.
- W4378174996 cites W2779186769 @default.
- W4378174996 cites W2782823532 @default.
- W4378174996 cites W2804558096 @default.
- W4378174996 cites W2808868472 @default.
- W4378174996 cites W2913825337 @default.
- W4378174996 cites W2920008855 @default.
- W4378174996 cites W2941145756 @default.
- W4378174996 cites W2962756421 @default.
- W4378174996 cites W2964126306 @default.
- W4378174996 cites W2976642873 @default.
- W4378174996 cites W2981067452 @default.
- W4378174996 cites W3004334115 @default.
- W4378174996 cites W3105705953 @default.
- W4378174996 cites W3110723354 @default.
- W4378174996 cites W3124367822 @default.
- W4378174996 cites W4232932184 @default.
- W4378174996 doi "https://doi.org/10.1007/978-3-031-33614-0_14" @default.
- W4378174996 hasPublicationYear "2023" @default.
- W4378174996 type Work @default.
- W4378174996 citedByCount "0" @default.
- W4378174996 crossrefType "book-chapter" @default.
- W4378174996 hasAuthorship W4378174996A5004851252 @default.
- W4378174996 hasAuthorship W4378174996A5018574685 @default.
- W4378174996 hasAuthorship W4378174996A5026089310 @default.
- W4378174996 hasBestOaLocation W43781749962 @default.
- W4378174996 hasConcept C108583219 @default.
- W4378174996 hasConcept C119857082 @default.
- W4378174996 hasConcept C124101348 @default.
- W4378174996 hasConcept C132525143 @default.
- W4378174996 hasConcept C138885662 @default.
- W4378174996 hasConcept C154945302 @default.
- W4378174996 hasConcept C17744445 @default.
- W4378174996 hasConcept C194051981 @default.
- W4378174996 hasConcept C199539241 @default.
- W4378174996 hasConcept C206688291 @default.
- W4378174996 hasConcept C2776359362 @default.
- W4378174996 hasConcept C2778137410 @default.
- W4378174996 hasConcept C41008148 @default.
- W4378174996 hasConcept C41895202 @default.
- W4378174996 hasConcept C50644808 @default.
- W4378174996 hasConcept C59404180 @default.
- W4378174996 hasConcept C80444323 @default.
- W4378174996 hasConcept C94625758 @default.
- W4378174996 hasConceptScore W4378174996C108583219 @default.
- W4378174996 hasConceptScore W4378174996C119857082 @default.
- W4378174996 hasConceptScore W4378174996C124101348 @default.
- W4378174996 hasConceptScore W4378174996C132525143 @default.
- W4378174996 hasConceptScore W4378174996C138885662 @default.
- W4378174996 hasConceptScore W4378174996C154945302 @default.
- W4378174996 hasConceptScore W4378174996C17744445 @default.
- W4378174996 hasConceptScore W4378174996C194051981 @default.
- W4378174996 hasConceptScore W4378174996C199539241 @default.
- W4378174996 hasConceptScore W4378174996C206688291 @default.
- W4378174996 hasConceptScore W4378174996C2776359362 @default.
- W4378174996 hasConceptScore W4378174996C2778137410 @default.
- W4378174996 hasConceptScore W4378174996C41008148 @default.
- W4378174996 hasConceptScore W4378174996C41895202 @default.
- W4378174996 hasConceptScore W4378174996C50644808 @default.
- W4378174996 hasConceptScore W4378174996C59404180 @default.
- W4378174996 hasConceptScore W4378174996C80444323 @default.
- W4378174996 hasConceptScore W4378174996C94625758 @default.
- W4378174996 hasLocation W43781749961 @default.
- W4378174996 hasLocation W43781749962 @default.
- W4378174996 hasOpenAccess W4378174996 @default.
- W4378174996 hasPrimaryLocation W43781749961 @default.
- W4378174996 hasRelatedWork W2792987183 @default.
- W4378174996 hasRelatedWork W2908875379 @default.