Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378176178> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4378176178 endingPage "1371" @default.
- W4378176178 startingPage "1362" @default.
- W4378176178 abstract "
 
 
 
 Abstract
 The classification task known as MNIST digit recognition involves identifying handwritten numbers into their corresponding values. Although there are numerous approaches proposed for this type of task, they typically face issues in achieving high accuracy. One method that can improve single models' performance is through ensemble learning. The goal of this study is to explore the use of various learning techniques, such as boosting and bagging, in combination with random forest models and decision trees, to improve the performance of MNIST digit recognition with regard to accuracy. We then perform evaluations on these methods using various metrics, such as recall, precision, accuracy, and F1. The findings of this study provide valuable insight into the various advantages of ensemble methods for the MNIST digit recognition task. It also highlights the need to explore these techniques in the context of machine learning. The objective of this study is to investigate the use of ensembles in improving the accuracy of MNIST digit recognition. We performed evaluations on two popular methods, namely boosting and bagging, with random forest and decision tree models. The evaluation parameters included F1 score, recall, accuracy, and precision. The results of the evaluations revealed that both boosting and bagging methods performed well in terms of their evaluation metrics. In most cases, the decision tree performed better than the random forest. However, the random forest method was able to achieve the highest accuracy, which is 99 percent. The findings of the evaluation revealed that ensembles can help improve single models' accuracy in MNIST digit recognition. On the other hand, the random forest method is a promising option for this task. The exact results of the evaluations will vary depending on the evaluation and implementation metrics. More research is needed to confirm their generalizability. The study emphasizes the value of exploring ensembles in machine learning systems, as well as the potential advantages of performing MNIST digit recognition using them.
 
 
 
" @default.
- W4378176178 created "2023-05-26" @default.
- W4378176178 creator A5063079399 @default.
- W4378176178 date "2021-02-26" @default.
- W4378176178 modified "2023-09-25" @default.
- W4378176178 title "Enhancing MNIST Digit Recognition with Ensemble Learning Techniques" @default.
- W4378176178 doi "https://doi.org/10.17762/msea.v70i2.2328" @default.
- W4378176178 hasPublicationYear "2021" @default.
- W4378176178 type Work @default.
- W4378176178 citedByCount "0" @default.
- W4378176178 crossrefType "journal-article" @default.
- W4378176178 hasAuthorship W4378176178A5063079399 @default.
- W4378176178 hasBestOaLocation W43781761781 @default.
- W4378176178 hasConcept C100660578 @default.
- W4378176178 hasConcept C108583219 @default.
- W4378176178 hasConcept C119857082 @default.
- W4378176178 hasConcept C127413603 @default.
- W4378176178 hasConcept C153180895 @default.
- W4378176178 hasConcept C154945302 @default.
- W4378176178 hasConcept C15744967 @default.
- W4378176178 hasConcept C169258074 @default.
- W4378176178 hasConcept C180747234 @default.
- W4378176178 hasConcept C190502265 @default.
- W4378176178 hasConcept C201995342 @default.
- W4378176178 hasConcept C2780451532 @default.
- W4378176178 hasConcept C2984784707 @default.
- W4378176178 hasConcept C33923547 @default.
- W4378176178 hasConcept C41008148 @default.
- W4378176178 hasConcept C45942800 @default.
- W4378176178 hasConcept C46686674 @default.
- W4378176178 hasConcept C50644808 @default.
- W4378176178 hasConcept C70153297 @default.
- W4378176178 hasConcept C84525736 @default.
- W4378176178 hasConcept C94375191 @default.
- W4378176178 hasConcept C94957134 @default.
- W4378176178 hasConceptScore W4378176178C100660578 @default.
- W4378176178 hasConceptScore W4378176178C108583219 @default.
- W4378176178 hasConceptScore W4378176178C119857082 @default.
- W4378176178 hasConceptScore W4378176178C127413603 @default.
- W4378176178 hasConceptScore W4378176178C153180895 @default.
- W4378176178 hasConceptScore W4378176178C154945302 @default.
- W4378176178 hasConceptScore W4378176178C15744967 @default.
- W4378176178 hasConceptScore W4378176178C169258074 @default.
- W4378176178 hasConceptScore W4378176178C180747234 @default.
- W4378176178 hasConceptScore W4378176178C190502265 @default.
- W4378176178 hasConceptScore W4378176178C201995342 @default.
- W4378176178 hasConceptScore W4378176178C2780451532 @default.
- W4378176178 hasConceptScore W4378176178C2984784707 @default.
- W4378176178 hasConceptScore W4378176178C33923547 @default.
- W4378176178 hasConceptScore W4378176178C41008148 @default.
- W4378176178 hasConceptScore W4378176178C45942800 @default.
- W4378176178 hasConceptScore W4378176178C46686674 @default.
- W4378176178 hasConceptScore W4378176178C50644808 @default.
- W4378176178 hasConceptScore W4378176178C70153297 @default.
- W4378176178 hasConceptScore W4378176178C84525736 @default.
- W4378176178 hasConceptScore W4378176178C94375191 @default.
- W4378176178 hasConceptScore W4378176178C94957134 @default.
- W4378176178 hasIssue "2" @default.
- W4378176178 hasLocation W43781761781 @default.
- W4378176178 hasOpenAccess W4378176178 @default.
- W4378176178 hasPrimaryLocation W43781761781 @default.
- W4378176178 hasRelatedWork W3100297620 @default.
- W4378176178 hasRelatedWork W3201348321 @default.
- W4378176178 hasRelatedWork W3204641204 @default.
- W4378176178 hasRelatedWork W4288057626 @default.
- W4378176178 hasRelatedWork W4293069612 @default.
- W4378176178 hasRelatedWork W4296081764 @default.
- W4378176178 hasRelatedWork W4298012357 @default.
- W4378176178 hasRelatedWork W4375930479 @default.
- W4378176178 hasRelatedWork W4378176178 @default.
- W4378176178 hasRelatedWork W46572615 @default.
- W4378176178 hasVolume "70" @default.
- W4378176178 isParatext "false" @default.
- W4378176178 isRetracted "false" @default.
- W4378176178 workType "article" @default.