Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378190739> ?p ?o ?g. }
- W4378190739 endingPage "109723" @default.
- W4378190739 startingPage "109723" @default.
- W4378190739 abstract "Background and purposeLate radiation-induced hematuria can develop in prostate cancer patients undergoing radiotherapy and can negatively impact the quality-of-life of survivors. If a genetic component of risk could be modeled, this could potentially be the basis for modifying treatment for high-risk patients. We therefore investigated whether a previously developed machine learning-based modeling method using genome-wide common single nucleotide polymorphisms (SNPs) can stratify patients in terms of the risk of radiation-induced hematuria.Materials and methodsWe applied a two-step machine learning algorithm that we previously developed for genome-wide association studies called pre-conditioned random forest regression (PRFR). PRFR includes a pre-conditioning step, producing adjusted outcomes, followed by random forest regression modeling. Data was from germline genome-wide SNPs for 668 prostate cancer patients treated with radiotherapy. The cohort was stratified only once, at the outset of the modeling process, into two groups: a training set (2/3 of samples) for modeling and a validation set (1/3 of samples). Post-modeling bioinformatics analysis was conducted to identify biological correlates plausibly associated with the risk of hematuria.ResultsThe PRFR method achieved significantly better predictive performance compared to other alternative methods (all p < 0.05). The odds ratio between the high and low risk groups, each of which consisted of 1/3 of samples in the validation set, was 2.87 (p = 0.029), implying a clinically useful level of discrimination. Bioinformatics analysis identified six key proteins encoded by CTNND2, GSK3B, KCNQ2, NEDD4L, PRKAA1, and TXNL1 genes as well as four statistically significant biological process networks previously shown to be associated with the bladder and urinary tract.ConclusionThe risk of hematuria is significantly dependent on common genetic variants. The PRFR algorithm resulted in a stratification of prostate cancer patients at differential risk levels of post-radiotherapy hematuria. Bioinformatics analysis identified important biological processes involved in radiation-induced hematuria." @default.
- W4378190739 created "2023-05-26" @default.
- W4378190739 creator A5012935165 @default.
- W4378190739 creator A5026159944 @default.
- W4378190739 creator A5033261943 @default.
- W4378190739 creator A5035407370 @default.
- W4378190739 creator A5054681353 @default.
- W4378190739 creator A5078855608 @default.
- W4378190739 creator A5090040622 @default.
- W4378190739 date "2023-08-01" @default.
- W4378190739 modified "2023-10-17" @default.
- W4378190739 title "Predicting the germline dependence of hematuria risk in prostate cancer radiotherapy patients" @default.
- W4378190739 cites W1558737384 @default.
- W4378190739 cites W1908190349 @default.
- W4378190739 cites W1967784918 @default.
- W4378190739 cites W1974040882 @default.
- W4378190739 cites W1974701509 @default.
- W4378190739 cites W1985275204 @default.
- W4378190739 cites W1987886090 @default.
- W4378190739 cites W1994682257 @default.
- W4378190739 cites W2008969125 @default.
- W4378190739 cites W2009645056 @default.
- W4378190739 cites W2023162983 @default.
- W4378190739 cites W2025313378 @default.
- W4378190739 cites W2089107401 @default.
- W4378190739 cites W2095381564 @default.
- W4378190739 cites W2099085143 @default.
- W4378190739 cites W2114585426 @default.
- W4378190739 cites W2126009021 @default.
- W4378190739 cites W2128016314 @default.
- W4378190739 cites W2133371715 @default.
- W4378190739 cites W2148012979 @default.
- W4378190739 cites W2158296256 @default.
- W4378190739 cites W2167028219 @default.
- W4378190739 cites W2290327023 @default.
- W4378190739 cites W2290358266 @default.
- W4378190739 cites W2341191999 @default.
- W4378190739 cites W2417118229 @default.
- W4378190739 cites W2510973425 @default.
- W4378190739 cites W2584778580 @default.
- W4378190739 cites W2589394645 @default.
- W4378190739 cites W2751299242 @default.
- W4378190739 cites W2791931722 @default.
- W4378190739 cites W2886716223 @default.
- W4378190739 cites W2925268994 @default.
- W4378190739 cites W2946307060 @default.
- W4378190739 cites W2947371156 @default.
- W4378190739 cites W2948586380 @default.
- W4378190739 cites W2952803126 @default.
- W4378190739 cites W2964115770 @default.
- W4378190739 cites W3008720068 @default.
- W4378190739 cites W3024717600 @default.
- W4378190739 cites W3131055609 @default.
- W4378190739 cites W3207710685 @default.
- W4378190739 cites W4206912919 @default.
- W4378190739 doi "https://doi.org/10.1016/j.radonc.2023.109723" @default.
- W4378190739 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37244355" @default.
- W4378190739 hasPublicationYear "2023" @default.
- W4378190739 type Work @default.
- W4378190739 citedByCount "0" @default.
- W4378190739 crossrefType "journal-article" @default.
- W4378190739 hasAuthorship W4378190739A5012935165 @default.
- W4378190739 hasAuthorship W4378190739A5026159944 @default.
- W4378190739 hasAuthorship W4378190739A5033261943 @default.
- W4378190739 hasAuthorship W4378190739A5035407370 @default.
- W4378190739 hasAuthorship W4378190739A5054681353 @default.
- W4378190739 hasAuthorship W4378190739A5078855608 @default.
- W4378190739 hasAuthorship W4378190739A5090040622 @default.
- W4378190739 hasBestOaLocation W43781907391 @default.
- W4378190739 hasConcept C104317684 @default.
- W4378190739 hasConcept C121608353 @default.
- W4378190739 hasConcept C126322002 @default.
- W4378190739 hasConcept C135763542 @default.
- W4378190739 hasConcept C143998085 @default.
- W4378190739 hasConcept C151956035 @default.
- W4378190739 hasConcept C153209595 @default.
- W4378190739 hasConcept C154945302 @default.
- W4378190739 hasConcept C169258074 @default.
- W4378190739 hasConcept C2780192828 @default.
- W4378190739 hasConcept C41008148 @default.
- W4378190739 hasConcept C509974204 @default.
- W4378190739 hasConcept C54355233 @default.
- W4378190739 hasConcept C70721500 @default.
- W4378190739 hasConcept C71924100 @default.
- W4378190739 hasConcept C72563966 @default.
- W4378190739 hasConcept C86803240 @default.
- W4378190739 hasConceptScore W4378190739C104317684 @default.
- W4378190739 hasConceptScore W4378190739C121608353 @default.
- W4378190739 hasConceptScore W4378190739C126322002 @default.
- W4378190739 hasConceptScore W4378190739C135763542 @default.
- W4378190739 hasConceptScore W4378190739C143998085 @default.
- W4378190739 hasConceptScore W4378190739C151956035 @default.
- W4378190739 hasConceptScore W4378190739C153209595 @default.
- W4378190739 hasConceptScore W4378190739C154945302 @default.
- W4378190739 hasConceptScore W4378190739C169258074 @default.
- W4378190739 hasConceptScore W4378190739C2780192828 @default.
- W4378190739 hasConceptScore W4378190739C41008148 @default.
- W4378190739 hasConceptScore W4378190739C509974204 @default.