Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378191509> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4378191509 abstract "Stock price prediction with machine learning is an oft-studied area where numerous unsolved problems still abound owing to the high complexity and volatility that technical-factors and sentiment-analysis models are trying to capture. Nearly all areas of machine learning (ML) have been tested as solutions to generate a truly accurate predictive model. The accuracy of most models hovers around 50%, highlighting the need for further increases in precision, data handling, forecasting, and ultimately prediction.In this paper we present the result of our work on high-frequency (every fifteen minutes) stock-price prediction using technical data with a number of exogenous variables. These variables are carefully chosen to reflect the conventional wisdom in a traditional stock analysis on historical trend, general stock market condition, and interest rate movement. Several simple machine learning (ML) algorithms were developed to test the premise that with the appropriate variables, even a simple ML model could produce reasonable prediction of stock prices. Therefore, the originality of our approach is a rational selection of relevant and useful features and also on-the-fly model re-training taking advantage of the human time scale of inference (price prediction) and moderate size of the models. Moreover we do not mix any trading strategy with our stock-price prediction experiments, to ensure that conclusions are not context-dependent.Systems that integrate and test sentiment and technical analysis are considered the best candidates for an eventual generalized trading algorithm that can be applied to any stock, future, or traded commodity. However, much work remains to be done in applying natural language processing and the choice of text sources to find the most effective mixture of sentiment and technical analysis. Work on this area will be included in the next phase of our research project and here we have summarized some of the most relevant existing works in this direction." @default.
- W4378191509 created "2023-05-26" @default.
- W4378191509 creator A5006607311 @default.
- W4378191509 creator A5068748460 @default.
- W4378191509 creator A5083484982 @default.
- W4378191509 creator A5086262313 @default.
- W4378191509 creator A5088088604 @default.
- W4378191509 creator A5092016171 @default.
- W4378191509 date "2023-04-17" @default.
- W4378191509 modified "2023-10-18" @default.
- W4378191509 title "Forecasting of Stock Prices Using Machine Learning Models" @default.
- W4378191509 cites W2048805759 @default.
- W4378191509 cites W2092154000 @default.
- W4378191509 cites W2126707096 @default.
- W4378191509 cites W2345895475 @default.
- W4378191509 cites W2549852042 @default.
- W4378191509 cites W2617692151 @default.
- W4378191509 cites W2618979805 @default.
- W4378191509 cites W2665090220 @default.
- W4378191509 cites W2806456500 @default.
- W4378191509 cites W2808626748 @default.
- W4378191509 cites W2894449602 @default.
- W4378191509 cites W2899992493 @default.
- W4378191509 cites W2943216092 @default.
- W4378191509 cites W2997421965 @default.
- W4378191509 cites W3005880472 @default.
- W4378191509 cites W4210301429 @default.
- W4378191509 cites W4210351797 @default.
- W4378191509 cites W4280583546 @default.
- W4378191509 doi "https://doi.org/10.1109/syscon53073.2023.10131091" @default.
- W4378191509 hasPublicationYear "2023" @default.
- W4378191509 type Work @default.
- W4378191509 citedByCount "1" @default.
- W4378191509 countsByYear W43781915092023 @default.
- W4378191509 crossrefType "proceedings-article" @default.
- W4378191509 hasAuthorship W4378191509A5006607311 @default.
- W4378191509 hasAuthorship W4378191509A5068748460 @default.
- W4378191509 hasAuthorship W4378191509A5083484982 @default.
- W4378191509 hasAuthorship W4378191509A5086262313 @default.
- W4378191509 hasAuthorship W4378191509A5088088604 @default.
- W4378191509 hasAuthorship W4378191509A5092016171 @default.
- W4378191509 hasConcept C106159729 @default.
- W4378191509 hasConcept C117245426 @default.
- W4378191509 hasConcept C119857082 @default.
- W4378191509 hasConcept C127413603 @default.
- W4378191509 hasConcept C149782125 @default.
- W4378191509 hasConcept C151730666 @default.
- W4378191509 hasConcept C154945302 @default.
- W4378191509 hasConcept C162324750 @default.
- W4378191509 hasConcept C204036174 @default.
- W4378191509 hasConcept C2776214188 @default.
- W4378191509 hasConcept C2779343474 @default.
- W4378191509 hasConcept C2780299701 @default.
- W4378191509 hasConcept C41008148 @default.
- W4378191509 hasConcept C78519656 @default.
- W4378191509 hasConcept C86803240 @default.
- W4378191509 hasConcept C91602232 @default.
- W4378191509 hasConceptScore W4378191509C106159729 @default.
- W4378191509 hasConceptScore W4378191509C117245426 @default.
- W4378191509 hasConceptScore W4378191509C119857082 @default.
- W4378191509 hasConceptScore W4378191509C127413603 @default.
- W4378191509 hasConceptScore W4378191509C149782125 @default.
- W4378191509 hasConceptScore W4378191509C151730666 @default.
- W4378191509 hasConceptScore W4378191509C154945302 @default.
- W4378191509 hasConceptScore W4378191509C162324750 @default.
- W4378191509 hasConceptScore W4378191509C204036174 @default.
- W4378191509 hasConceptScore W4378191509C2776214188 @default.
- W4378191509 hasConceptScore W4378191509C2779343474 @default.
- W4378191509 hasConceptScore W4378191509C2780299701 @default.
- W4378191509 hasConceptScore W4378191509C41008148 @default.
- W4378191509 hasConceptScore W4378191509C78519656 @default.
- W4378191509 hasConceptScore W4378191509C86803240 @default.
- W4378191509 hasConceptScore W4378191509C91602232 @default.
- W4378191509 hasLocation W43781915091 @default.
- W4378191509 hasOpenAccess W4378191509 @default.
- W4378191509 hasPrimaryLocation W43781915091 @default.
- W4378191509 hasRelatedWork W1569950097 @default.
- W4378191509 hasRelatedWork W1963569934 @default.
- W4378191509 hasRelatedWork W2024282289 @default.
- W4378191509 hasRelatedWork W2036948323 @default.
- W4378191509 hasRelatedWork W2119825294 @default.
- W4378191509 hasRelatedWork W2529055134 @default.
- W4378191509 hasRelatedWork W2920078518 @default.
- W4378191509 hasRelatedWork W2939334805 @default.
- W4378191509 hasRelatedWork W2963058055 @default.
- W4378191509 hasRelatedWork W3124911654 @default.
- W4378191509 isParatext "false" @default.
- W4378191509 isRetracted "false" @default.
- W4378191509 workType "article" @default.