Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378192685> ?p ?o ?g. }
- W4378192685 endingPage "1829" @default.
- W4378192685 startingPage "1824" @default.
- W4378192685 abstract "Objective Ultrasound backscattered signals encompass information on the microstructure of heterogeneous media such as cortical bone, in which pores act as scatterers and result in the scattering and multiple scattering of ultrasound waves. The objective of this study was to investigate whether Shannon entropy can be exploited to characterize cortical porosity. Methods In the study described here, to demonstrate proof of concept, Shannon entropy was used as a quantitative ultrasound parameter to experimentally evaluate microstructural changes in samples with controlled scatterer concentrations made of a highly absorbing polydimethylsiloxane matrix (PDMS). Similar assessment was then performed using numerical simulations on cortical bone structures with varying average pore diameter (Ct.Po.Dm.), density (Ct.Po.Dn.) and porosity (Ct.Po.). Results The results suggest that an increase in pore diameter and porosity lead to an increase in entropy, indicating increased levels of randomness in the signals as a result of increased scattering. The entropy-versus-scatterer volume fraction in PDMS samples indicates an initial increasing trend that slows down as the scatterer concentration increases. High levels of attenuation cause the signal amplitudes and corresponding entropy values to decrease drastically. The same trend is observed when porosity of the bone samples is increased above 15%. Conclusion Sensitivity of entropy to microstructural changes in highly scattering and absorbing media can potentially be exploited to diagnose and monitor osteoporosis. Ultrasound backscattered signals encompass information on the microstructure of heterogeneous media such as cortical bone, in which pores act as scatterers and result in the scattering and multiple scattering of ultrasound waves. The objective of this study was to investigate whether Shannon entropy can be exploited to characterize cortical porosity. In the study described here, to demonstrate proof of concept, Shannon entropy was used as a quantitative ultrasound parameter to experimentally evaluate microstructural changes in samples with controlled scatterer concentrations made of a highly absorbing polydimethylsiloxane matrix (PDMS). Similar assessment was then performed using numerical simulations on cortical bone structures with varying average pore diameter (Ct.Po.Dm.), density (Ct.Po.Dn.) and porosity (Ct.Po.). The results suggest that an increase in pore diameter and porosity lead to an increase in entropy, indicating increased levels of randomness in the signals as a result of increased scattering. The entropy-versus-scatterer volume fraction in PDMS samples indicates an initial increasing trend that slows down as the scatterer concentration increases. High levels of attenuation cause the signal amplitudes and corresponding entropy values to decrease drastically. The same trend is observed when porosity of the bone samples is increased above 15%. Sensitivity of entropy to microstructural changes in highly scattering and absorbing media can potentially be exploited to diagnose and monitor osteoporosis." @default.
- W4378192685 created "2023-05-26" @default.
- W4378192685 creator A5002477721 @default.
- W4378192685 creator A5006482193 @default.
- W4378192685 creator A5038885435 @default.
- W4378192685 creator A5047275182 @default.
- W4378192685 creator A5063912520 @default.
- W4378192685 date "2023-08-01" @default.
- W4378192685 modified "2023-09-29" @default.
- W4378192685 title "Ultrasound Characterization of Cortical Bone Using Shannon Entropy" @default.
- W4378192685 cites W1586073971 @default.
- W4378192685 cites W1895809050 @default.
- W4378192685 cites W1969465167 @default.
- W4378192685 cites W1986067323 @default.
- W4378192685 cites W1990386523 @default.
- W4378192685 cites W1995875735 @default.
- W4378192685 cites W2008869705 @default.
- W4378192685 cites W2017114945 @default.
- W4378192685 cites W2018474140 @default.
- W4378192685 cites W2039038256 @default.
- W4378192685 cites W2046946848 @default.
- W4378192685 cites W2049686243 @default.
- W4378192685 cites W2066646366 @default.
- W4378192685 cites W2069406013 @default.
- W4378192685 cites W2075079623 @default.
- W4378192685 cites W2076436405 @default.
- W4378192685 cites W2088992314 @default.
- W4378192685 cites W2096050373 @default.
- W4378192685 cites W2116605720 @default.
- W4378192685 cites W2118100789 @default.
- W4378192685 cites W2126615296 @default.
- W4378192685 cites W2140746355 @default.
- W4378192685 cites W2149730735 @default.
- W4378192685 cites W2154116060 @default.
- W4378192685 cites W2154864208 @default.
- W4378192685 cites W2158519646 @default.
- W4378192685 cites W2336690203 @default.
- W4378192685 cites W2440734564 @default.
- W4378192685 cites W2474969214 @default.
- W4378192685 cites W2519302429 @default.
- W4378192685 cites W2521629941 @default.
- W4378192685 cites W2552659629 @default.
- W4378192685 cites W2573186037 @default.
- W4378192685 cites W2795844376 @default.
- W4378192685 cites W2887210654 @default.
- W4378192685 cites W2901257524 @default.
- W4378192685 cites W2911761796 @default.
- W4378192685 cites W2912000563 @default.
- W4378192685 cites W2942963271 @default.
- W4378192685 cites W2947778584 @default.
- W4378192685 cites W2967845986 @default.
- W4378192685 cites W2973916704 @default.
- W4378192685 cites W3087029058 @default.
- W4378192685 cites W3094528293 @default.
- W4378192685 cites W4206482699 @default.
- W4378192685 doi "https://doi.org/10.1016/j.ultrasmedbio.2023.04.006" @default.
- W4378192685 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37244812" @default.
- W4378192685 hasPublicationYear "2023" @default.
- W4378192685 type Work @default.
- W4378192685 citedByCount "0" @default.
- W4378192685 crossrefType "journal-article" @default.
- W4378192685 hasAuthorship W4378192685A5002477721 @default.
- W4378192685 hasAuthorship W4378192685A5006482193 @default.
- W4378192685 hasAuthorship W4378192685A5038885435 @default.
- W4378192685 hasAuthorship W4378192685A5047275182 @default.
- W4378192685 hasAuthorship W4378192685A5063912520 @default.
- W4378192685 hasConcept C105569014 @default.
- W4378192685 hasConcept C105702510 @default.
- W4378192685 hasConcept C106301342 @default.
- W4378192685 hasConcept C120456961 @default.
- W4378192685 hasConcept C120665830 @default.
- W4378192685 hasConcept C121332964 @default.
- W4378192685 hasConcept C136229726 @default.
- W4378192685 hasConcept C143753070 @default.
- W4378192685 hasConcept C159985019 @default.
- W4378192685 hasConcept C184652730 @default.
- W4378192685 hasConcept C191486275 @default.
- W4378192685 hasConcept C192562407 @default.
- W4378192685 hasConcept C24890656 @default.
- W4378192685 hasConcept C2779849746 @default.
- W4378192685 hasConcept C2781451080 @default.
- W4378192685 hasConcept C6648577 @default.
- W4378192685 hasConcept C71924100 @default.
- W4378192685 hasConcept C97355855 @default.
- W4378192685 hasConceptScore W4378192685C105569014 @default.
- W4378192685 hasConceptScore W4378192685C105702510 @default.
- W4378192685 hasConceptScore W4378192685C106301342 @default.
- W4378192685 hasConceptScore W4378192685C120456961 @default.
- W4378192685 hasConceptScore W4378192685C120665830 @default.
- W4378192685 hasConceptScore W4378192685C121332964 @default.
- W4378192685 hasConceptScore W4378192685C136229726 @default.
- W4378192685 hasConceptScore W4378192685C143753070 @default.
- W4378192685 hasConceptScore W4378192685C159985019 @default.
- W4378192685 hasConceptScore W4378192685C184652730 @default.
- W4378192685 hasConceptScore W4378192685C191486275 @default.
- W4378192685 hasConceptScore W4378192685C192562407 @default.
- W4378192685 hasConceptScore W4378192685C24890656 @default.
- W4378192685 hasConceptScore W4378192685C2779849746 @default.