Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378194865> ?p ?o ?g. }
- W4378194865 endingPage "57284" @default.
- W4378194865 startingPage "57268" @default.
- W4378194865 abstract "miRNA expression profiles are heterogeneously expressed among cancer types, with miRNAs serving as highly tissue specific tumor suppressors and oncogenes. Machine learning methodologies have been used to develop high performance pan-cancer classification models and identify potentially novel miRNA biomarkers for clinical investigation. However, it is important to understand how such data science techniques correlate to established biological processes to advance integration into clinical environments. This research aims to assess how the top miRNA features selected by machine learning models relate to clinically and biologically verified miRNA biomarkers. We developed Support Vector Machine and Random Forest machine learning models for cancer classification, iteratively adding cancer classes to the multiclass models. The relationship between the selected top features (miRNAs) and clinically verified miRNA biomarkers was assessed through percent relevance, i.e., the number of verified miRNAs vs the number of selected features. We found that as the number of cancer classes increased, the performance metrics decreased, yet the percentage relevance of the miRNA feature selection signature slightly increased before stabilizing. Additionally, after conducting principal component analysis, the non-cancer tissues from all samples had very similar expression visualizations, while all cancerous tissues had unique profiles. The results indicated that models with a greater number of cancer classes shift towards focusing on cancer-diverse miRNAs of greater relevance with characterized functionality. This work suggests that miRNAs may be highly unique to specific cancerous tissues and can be strong biomarkers for detection and classification, but current verified biomarkers fall toward more cancer-wide miRNAs when detecting cancer." @default.
- W4378194865 created "2023-05-26" @default.
- W4378194865 creator A5026298167 @default.
- W4378194865 creator A5063649041 @default.
- W4378194865 creator A5092016777 @default.
- W4378194865 creator A5092016778 @default.
- W4378194865 creator A5092016779 @default.
- W4378194865 creator A5092016780 @default.
- W4378194865 date "2023-01-01" @default.
- W4378194865 modified "2023-09-24" @default.
- W4378194865 title "Exploration of the Relevance of MicroRNA Signatures for Cancer Detection and Multiclass Cancer Classification" @default.
- W4378194865 cites W1648301895 @default.
- W4378194865 cites W1965641017 @default.
- W4378194865 cites W1967522001 @default.
- W4378194865 cites W1974254202 @default.
- W4378194865 cites W1986756287 @default.
- W4378194865 cites W1992970284 @default.
- W4378194865 cites W2021560851 @default.
- W4378194865 cites W2030399670 @default.
- W4378194865 cites W2030583095 @default.
- W4378194865 cites W2038920886 @default.
- W4378194865 cites W2043704189 @default.
- W4378194865 cites W2061558045 @default.
- W4378194865 cites W2061623831 @default.
- W4378194865 cites W2069295843 @default.
- W4378194865 cites W2092939357 @default.
- W4378194865 cites W2120015541 @default.
- W4378194865 cites W2137999492 @default.
- W4378194865 cites W2142489285 @default.
- W4378194865 cites W2147626573 @default.
- W4378194865 cites W2150273386 @default.
- W4378194865 cites W2169034821 @default.
- W4378194865 cites W2343280592 @default.
- W4378194865 cites W2549585545 @default.
- W4378194865 cites W2579522812 @default.
- W4378194865 cites W2588836588 @default.
- W4378194865 cites W2588840062 @default.
- W4378194865 cites W2765950793 @default.
- W4378194865 cites W2799520029 @default.
- W4378194865 cites W2971408701 @default.
- W4378194865 cites W2974261289 @default.
- W4378194865 cites W3008329082 @default.
- W4378194865 cites W3009954415 @default.
- W4378194865 cites W3082750341 @default.
- W4378194865 cites W3094376574 @default.
- W4378194865 cites W3107951541 @default.
- W4378194865 cites W3146268618 @default.
- W4378194865 cites W3171522587 @default.
- W4378194865 cites W3192723416 @default.
- W4378194865 doi "https://doi.org/10.1109/access.2023.3280066" @default.
- W4378194865 hasPublicationYear "2023" @default.
- W4378194865 type Work @default.
- W4378194865 citedByCount "0" @default.
- W4378194865 crossrefType "journal-article" @default.
- W4378194865 hasAuthorship W4378194865A5026298167 @default.
- W4378194865 hasAuthorship W4378194865A5063649041 @default.
- W4378194865 hasAuthorship W4378194865A5092016777 @default.
- W4378194865 hasAuthorship W4378194865A5092016778 @default.
- W4378194865 hasAuthorship W4378194865A5092016779 @default.
- W4378194865 hasAuthorship W4378194865A5092016780 @default.
- W4378194865 hasBestOaLocation W43781948651 @default.
- W4378194865 hasConcept C104317684 @default.
- W4378194865 hasConcept C119857082 @default.
- W4378194865 hasConcept C121608353 @default.
- W4378194865 hasConcept C12267149 @default.
- W4378194865 hasConcept C126322002 @default.
- W4378194865 hasConcept C145059251 @default.
- W4378194865 hasConcept C148483581 @default.
- W4378194865 hasConcept C154945302 @default.
- W4378194865 hasConcept C158154518 @default.
- W4378194865 hasConcept C169258074 @default.
- W4378194865 hasConcept C17744445 @default.
- W4378194865 hasConcept C199539241 @default.
- W4378194865 hasConcept C2777002142 @default.
- W4378194865 hasConcept C41008148 @default.
- W4378194865 hasConcept C55493867 @default.
- W4378194865 hasConcept C60644358 @default.
- W4378194865 hasConcept C70721500 @default.
- W4378194865 hasConcept C71924100 @default.
- W4378194865 hasConcept C86803240 @default.
- W4378194865 hasConceptScore W4378194865C104317684 @default.
- W4378194865 hasConceptScore W4378194865C119857082 @default.
- W4378194865 hasConceptScore W4378194865C121608353 @default.
- W4378194865 hasConceptScore W4378194865C12267149 @default.
- W4378194865 hasConceptScore W4378194865C126322002 @default.
- W4378194865 hasConceptScore W4378194865C145059251 @default.
- W4378194865 hasConceptScore W4378194865C148483581 @default.
- W4378194865 hasConceptScore W4378194865C154945302 @default.
- W4378194865 hasConceptScore W4378194865C158154518 @default.
- W4378194865 hasConceptScore W4378194865C169258074 @default.
- W4378194865 hasConceptScore W4378194865C17744445 @default.
- W4378194865 hasConceptScore W4378194865C199539241 @default.
- W4378194865 hasConceptScore W4378194865C2777002142 @default.
- W4378194865 hasConceptScore W4378194865C41008148 @default.
- W4378194865 hasConceptScore W4378194865C55493867 @default.
- W4378194865 hasConceptScore W4378194865C60644358 @default.
- W4378194865 hasConceptScore W4378194865C70721500 @default.
- W4378194865 hasConceptScore W4378194865C71924100 @default.