Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378194906> ?p ?o ?g. }
- W4378194906 endingPage "11" @default.
- W4378194906 startingPage "1" @default.
- W4378194906 abstract "In this paper, we present electromyography analysis of human activity - database 1 (EMAHA-DB1), a novel dataset of multi-channel surface electromyography (sEMG) signals to evaluate the activities of daily living (ADL). The dataset is acquired from 25 able-bodied subjects while performing 22 activities categorised according to functional arm activity behavioral system (FAABOS) (3 - full hand gestures, 6 - open/close office draw, 8 - grasping and holding of small office objects, 2 - flexion and extension of finger movements, 2 - writing and 1 - rest). The sEMG data is measured by a set of five Noraxon Ultium wireless sEMG sensors with Ag/Agcl electrodes placed on a human hand. The dataset is analyzed for hand activity recognition classification performance. The classification is performed using six state-of-the-art machine learning classifiers, including Random Forest (RF), Fine K-Nearest Neighbour (KNN), Ensemble KNN (sKNN), Linear Discriminant Analysis (LDA), Support Vector Machines (SVM), and a hybrid deep learning architecture of Convolutional Neural Network (CNN) and Bidirectional- Long Short Term Memory (Bi-LSTM) layers. In the classical methods, ten combinations of time domain and frequency domain feature sets are analyzed. The state-of-the-art classification accuracy on five FAABOS categories is 83.21% by using the SVM classifier with the third order polynomial kernel using energy feature and auto regressive feature set ensemble. The classification accuracy on 22 class hand activities is 75.39% by the same SVM classifier with the log moments in frequency domain (LMF) feature, modified LMF, time domain statistical (TDS) feature, spectral band powers (SBP), channel cross correlation and local binary patterns (LBP) set ensemble. The analysis depicts the technical challenges addressed by the dataset. The developed dataset can be used as a benchmark for various classification methods as well as for sEMG signal analysis corresponding to ADL and for the development of prosthetics and other wearable robotics." @default.
- W4378194906 created "2023-05-26" @default.
- W4378194906 creator A5042802565 @default.
- W4378194906 creator A5047070985 @default.
- W4378194906 creator A5048082929 @default.
- W4378194906 creator A5080866384 @default.
- W4378194906 date "2023-01-01" @default.
- W4378194906 modified "2023-10-02" @default.
- W4378194906 title "EMAHA-DB1: A New Upper Limb sEMG Dataset for Classification of Activities of Daily Living" @default.
- W4378194906 cites W1705192477 @default.
- W4378194906 cites W1739161492 @default.
- W4378194906 cites W1885932581 @default.
- W4378194906 cites W1965417039 @default.
- W4378194906 cites W1971270920 @default.
- W4378194906 cites W1980930652 @default.
- W4378194906 cites W1984290395 @default.
- W4378194906 cites W2013463953 @default.
- W4378194906 cites W2015228657 @default.
- W4378194906 cites W2022327534 @default.
- W4378194906 cites W2066327120 @default.
- W4378194906 cites W2079118576 @default.
- W4378194906 cites W2084446881 @default.
- W4378194906 cites W2100661295 @default.
- W4378194906 cites W2102845969 @default.
- W4378194906 cites W2111135417 @default.
- W4378194906 cites W2126582405 @default.
- W4378194906 cites W2152093652 @default.
- W4378194906 cites W2168481151 @default.
- W4378194906 cites W2169931829 @default.
- W4378194906 cites W2203630559 @default.
- W4378194906 cites W2222998165 @default.
- W4378194906 cites W2230466109 @default.
- W4378194906 cites W2243789297 @default.
- W4378194906 cites W2315501924 @default.
- W4378194906 cites W2600327335 @default.
- W4378194906 cites W2744682287 @default.
- W4378194906 cites W2749794192 @default.
- W4378194906 cites W2762706434 @default.
- W4378194906 cites W2771247593 @default.
- W4378194906 cites W2795870271 @default.
- W4378194906 cites W2887983676 @default.
- W4378194906 cites W2914026423 @default.
- W4378194906 cites W2943680334 @default.
- W4378194906 cites W2947350209 @default.
- W4378194906 cites W2961322186 @default.
- W4378194906 cites W2970498288 @default.
- W4378194906 cites W2987247926 @default.
- W4378194906 cites W2995927431 @default.
- W4378194906 cites W3010195458 @default.
- W4378194906 cites W3017424189 @default.
- W4378194906 cites W3083582638 @default.
- W4378194906 cites W3091365854 @default.
- W4378194906 cites W3092388469 @default.
- W4378194906 cites W3130663237 @default.
- W4378194906 cites W3131832878 @default.
- W4378194906 cites W3169917840 @default.
- W4378194906 cites W3185201038 @default.
- W4378194906 cites W3215846288 @default.
- W4378194906 cites W4214579445 @default.
- W4378194906 cites W4220811878 @default.
- W4378194906 cites W4225488023 @default.
- W4378194906 cites W4225579829 @default.
- W4378194906 cites W4246060892 @default.
- W4378194906 cites W4293859559 @default.
- W4378194906 cites W4304689924 @default.
- W4378194906 cites W4309206820 @default.
- W4378194906 cites W4311403344 @default.
- W4378194906 cites W4312671105 @default.
- W4378194906 cites W4313389760 @default.
- W4378194906 doi "https://doi.org/10.1109/tim.2023.3279873" @default.
- W4378194906 hasPublicationYear "2023" @default.
- W4378194906 type Work @default.
- W4378194906 citedByCount "0" @default.
- W4378194906 crossrefType "journal-article" @default.
- W4378194906 hasAuthorship W4378194906A5042802565 @default.
- W4378194906 hasAuthorship W4378194906A5047070985 @default.
- W4378194906 hasAuthorship W4378194906A5048082929 @default.
- W4378194906 hasAuthorship W4378194906A5080866384 @default.
- W4378194906 hasBestOaLocation W43781949062 @default.
- W4378194906 hasConcept C12267149 @default.
- W4378194906 hasConcept C138885662 @default.
- W4378194906 hasConcept C148483581 @default.
- W4378194906 hasConcept C153180895 @default.
- W4378194906 hasConcept C154945302 @default.
- W4378194906 hasConcept C159437735 @default.
- W4378194906 hasConcept C169258074 @default.
- W4378194906 hasConcept C207347870 @default.
- W4378194906 hasConcept C2776401178 @default.
- W4378194906 hasConcept C28490314 @default.
- W4378194906 hasConcept C41008148 @default.
- W4378194906 hasConcept C41895202 @default.
- W4378194906 hasConcept C52622490 @default.
- W4378194906 hasConcept C69738355 @default.
- W4378194906 hasConcept C81363708 @default.
- W4378194906 hasConcept C95623464 @default.
- W4378194906 hasConceptScore W4378194906C12267149 @default.
- W4378194906 hasConceptScore W4378194906C138885662 @default.
- W4378194906 hasConceptScore W4378194906C148483581 @default.