Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378194983> ?p ?o ?g. }
- W4378194983 endingPage "1937" @default.
- W4378194983 startingPage "1922" @default.
- W4378194983 abstract "State-space models (SSMs) are a powerful statistical tool for modelling time-varying systems via a latent state. In these models, the latent state is never directly observed. Instead, a sequence of data points related to the state are obtained. The linear-Gaussian state-space model is widely used, since it allows for exact inference when all model parameters are known, however this is rarely the case. The estimation of these parameters is a very challenging but essential task to perform inference and prediction. In the linear-Gaussian model, the state dynamics are described via a state transition matrix. This model parameter is known to behard to estimate, since it encodes the relationships between the state elements, which are never observed. In many applications, this transition matrix is sparse since not all state components directly affect all other state components. However, most parameter estimation methods do not exploit this feature. In this work we propose SpaRJ, a fully probabilistic Bayesian approach that obtains sparse samples from the posterior distribution of the transition matrix. Our method explores sparsity by traversing a set of models that exhibit differing sparsity patterns in the transition matrix. Moreover, we also design new effective rules to explore transition matrices within the same level of sparsity. This novel methodology has strong theoretical guarantees, and unveils the latent structure of the data generating process, thereby enhancing interpretability. The performance of SpaRJ is showcased in example with dimension 144 in the parameter space, and in a numerical example with real data." @default.
- W4378194983 created "2023-05-26" @default.
- W4378194983 creator A5049613399 @default.
- W4378194983 creator A5085691944 @default.
- W4378194983 date "2023-01-01" @default.
- W4378194983 modified "2023-10-18" @default.
- W4378194983 title "Sparse Bayesian Estimation of Parameters in Linear-Gaussian State-Space Models" @default.
- W4378194983 cites W1501586228 @default.
- W4378194983 cites W1605649031 @default.
- W4378194983 cites W1749494163 @default.
- W4378194983 cites W1789155650 @default.
- W4378194983 cites W1921900885 @default.
- W4378194983 cites W1980586072 @default.
- W4378194983 cites W1982652137 @default.
- W4378194983 cites W1986931325 @default.
- W4378194983 cites W2014886698 @default.
- W4378194983 cites W2022228946 @default.
- W4378194983 cites W2030111109 @default.
- W4378194983 cites W2030911724 @default.
- W4378194983 cites W2031839259 @default.
- W4378194983 cites W2038885294 @default.
- W4378194983 cites W2042220296 @default.
- W4378194983 cites W2055748356 @default.
- W4378194983 cites W2071284784 @default.
- W4378194983 cites W2083137386 @default.
- W4378194983 cites W2098613108 @default.
- W4378194983 cites W2100068253 @default.
- W4378194983 cites W2105934661 @default.
- W4378194983 cites W2110156265 @default.
- W4378194983 cites W2112090702 @default.
- W4378194983 cites W2114169935 @default.
- W4378194983 cites W2117838564 @default.
- W4378194983 cites W2119033078 @default.
- W4378194983 cites W2135046866 @default.
- W4378194983 cites W2141226779 @default.
- W4378194983 cites W2144898279 @default.
- W4378194983 cites W2166046159 @default.
- W4378194983 cites W2178225550 @default.
- W4378194983 cites W2204230881 @default.
- W4378194983 cites W2347749413 @default.
- W4378194983 cites W2775246207 @default.
- W4378194983 cites W2776467917 @default.
- W4378194983 cites W2793507168 @default.
- W4378194983 cites W2949816873 @default.
- W4378194983 cites W2962777160 @default.
- W4378194983 cites W2977504015 @default.
- W4378194983 cites W2982582821 @default.
- W4378194983 cites W3000534101 @default.
- W4378194983 cites W3016186918 @default.
- W4378194983 cites W3101380508 @default.
- W4378194983 cites W3103934441 @default.
- W4378194983 cites W3122429434 @default.
- W4378194983 cites W3177237588 @default.
- W4378194983 cites W3200512440 @default.
- W4378194983 cites W3214407380 @default.
- W4378194983 cites W4232464081 @default.
- W4378194983 cites W4247985008 @default.
- W4378194983 cites W4248681815 @default.
- W4378194983 cites W4255133955 @default.
- W4378194983 cites W4296871128 @default.
- W4378194983 cites W4312917652 @default.
- W4378194983 cites W4372346150 @default.
- W4378194983 doi "https://doi.org/10.1109/tsp.2023.3278867" @default.
- W4378194983 hasPublicationYear "2023" @default.
- W4378194983 type Work @default.
- W4378194983 citedByCount "0" @default.
- W4378194983 crossrefType "journal-article" @default.
- W4378194983 hasAuthorship W4378194983A5049613399 @default.
- W4378194983 hasAuthorship W4378194983A5085691944 @default.
- W4378194983 hasBestOaLocation W43781949832 @default.
- W4378194983 hasConcept C105795698 @default.
- W4378194983 hasConcept C107673813 @default.
- W4378194983 hasConcept C11413529 @default.
- W4378194983 hasConcept C121332964 @default.
- W4378194983 hasConcept C154945302 @default.
- W4378194983 hasConcept C160234255 @default.
- W4378194983 hasConcept C163716315 @default.
- W4378194983 hasConcept C2776214188 @default.
- W4378194983 hasConcept C2781067378 @default.
- W4378194983 hasConcept C33923547 @default.
- W4378194983 hasConcept C41008148 @default.
- W4378194983 hasConcept C61326573 @default.
- W4378194983 hasConcept C62520636 @default.
- W4378194983 hasConcept C72434380 @default.
- W4378194983 hasConceptScore W4378194983C105795698 @default.
- W4378194983 hasConceptScore W4378194983C107673813 @default.
- W4378194983 hasConceptScore W4378194983C11413529 @default.
- W4378194983 hasConceptScore W4378194983C121332964 @default.
- W4378194983 hasConceptScore W4378194983C154945302 @default.
- W4378194983 hasConceptScore W4378194983C160234255 @default.
- W4378194983 hasConceptScore W4378194983C163716315 @default.
- W4378194983 hasConceptScore W4378194983C2776214188 @default.
- W4378194983 hasConceptScore W4378194983C2781067378 @default.
- W4378194983 hasConceptScore W4378194983C33923547 @default.
- W4378194983 hasConceptScore W4378194983C41008148 @default.
- W4378194983 hasConceptScore W4378194983C61326573 @default.
- W4378194983 hasConceptScore W4378194983C62520636 @default.
- W4378194983 hasConceptScore W4378194983C72434380 @default.