Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378214624> ?p ?o ?g. }
- W4378214624 abstract "We report the development of a combined machine learning and high-throughput density functional theory (DFT) framework to accelerate the search for new ferroelectric materials. The framework can predict potential ferroelectric compounds using only elemental composition as input. A series of machine-learning algorithms initially predict the possible stable and insulating stoichiometries with polar crystal structures, necessary for ferroelectricity, within a given chemical composition space. A classification model then predicts the point groups of these stoichiometries. A subsequent series of high-throughput DFT calculations finds the lowest-energy crystal structure within the point group. As a final step, nonpolar parent structures are identified using group theory considerations, and the values of the spontaneous polarization are calculated using DFT. By predicting the crystal structures and the polarization values, this method provides a powerful tool to explore new ferroelectric materials beyond those in existing databases." @default.
- W4378214624 created "2023-05-26" @default.
- W4378214624 creator A5010635053 @default.
- W4378214624 creator A5029673686 @default.
- W4378214624 creator A5032016956 @default.
- W4378214624 creator A5058780014 @default.
- W4378214624 creator A5072590905 @default.
- W4378214624 creator A5079173175 @default.
- W4378214624 date "2023-05-25" @default.
- W4378214624 modified "2023-10-10" @default.
- W4378214624 title "Accelerated search for new ferroelectric materials" @default.
- W4378214624 cites W1582645137 @default.
- W4378214624 cites W1871688526 @default.
- W4378214624 cites W1965883054 @default.
- W4378214624 cites W1970127494 @default.
- W4378214624 cites W1979544533 @default.
- W4378214624 cites W1981368803 @default.
- W4378214624 cites W1983077902 @default.
- W4378214624 cites W1998010646 @default.
- W4378214624 cites W2006102096 @default.
- W4378214624 cites W2010254160 @default.
- W4378214624 cites W2015197254 @default.
- W4378214624 cites W2017020007 @default.
- W4378214624 cites W2037401888 @default.
- W4378214624 cites W2075144063 @default.
- W4378214624 cites W2079105963 @default.
- W4378214624 cites W2083222334 @default.
- W4378214624 cites W2124820885 @default.
- W4378214624 cites W2162653998 @default.
- W4378214624 cites W2284260722 @default.
- W4378214624 cites W2312621025 @default.
- W4378214624 cites W2332916164 @default.
- W4378214624 cites W2345114824 @default.
- W4378214624 cites W2534542233 @default.
- W4378214624 cites W2579729659 @default.
- W4378214624 cites W2758012776 @default.
- W4378214624 cites W2790960441 @default.
- W4378214624 cites W2804765537 @default.
- W4378214624 cites W2954205360 @default.
- W4378214624 cites W2971894235 @default.
- W4378214624 cites W3010383729 @default.
- W4378214624 cites W3084388994 @default.
- W4378214624 cites W3107295539 @default.
- W4378214624 cites W3119520457 @default.
- W4378214624 cites W4289637617 @default.
- W4378214624 cites W832976576 @default.
- W4378214624 doi "https://doi.org/10.1103/physrevresearch.5.023122" @default.
- W4378214624 hasPublicationYear "2023" @default.
- W4378214624 type Work @default.
- W4378214624 citedByCount "1" @default.
- W4378214624 countsByYear W43782146242023 @default.
- W4378214624 crossrefType "journal-article" @default.
- W4378214624 hasAuthorship W4378214624A5010635053 @default.
- W4378214624 hasAuthorship W4378214624A5029673686 @default.
- W4378214624 hasAuthorship W4378214624A5032016956 @default.
- W4378214624 hasAuthorship W4378214624A5058780014 @default.
- W4378214624 hasAuthorship W4378214624A5072590905 @default.
- W4378214624 hasAuthorship W4378214624A5079173175 @default.
- W4378214624 hasBestOaLocation W43782146241 @default.
- W4378214624 hasConcept C11413529 @default.
- W4378214624 hasConcept C115624301 @default.
- W4378214624 hasConcept C121332964 @default.
- W4378214624 hasConcept C133386390 @default.
- W4378214624 hasConcept C143724316 @default.
- W4378214624 hasConcept C144082473 @default.
- W4378214624 hasConcept C147597530 @default.
- W4378214624 hasConcept C147789679 @default.
- W4378214624 hasConcept C151730666 @default.
- W4378214624 hasConcept C152365726 @default.
- W4378214624 hasConcept C159467904 @default.
- W4378214624 hasConcept C185592680 @default.
- W4378214624 hasConcept C192562407 @default.
- W4378214624 hasConcept C205049153 @default.
- W4378214624 hasConcept C29705727 @default.
- W4378214624 hasConcept C41008148 @default.
- W4378214624 hasConcept C49040817 @default.
- W4378214624 hasConcept C62520636 @default.
- W4378214624 hasConcept C79090758 @default.
- W4378214624 hasConcept C8010536 @default.
- W4378214624 hasConcept C86803240 @default.
- W4378214624 hasConceptScore W4378214624C11413529 @default.
- W4378214624 hasConceptScore W4378214624C115624301 @default.
- W4378214624 hasConceptScore W4378214624C121332964 @default.
- W4378214624 hasConceptScore W4378214624C133386390 @default.
- W4378214624 hasConceptScore W4378214624C143724316 @default.
- W4378214624 hasConceptScore W4378214624C144082473 @default.
- W4378214624 hasConceptScore W4378214624C147597530 @default.
- W4378214624 hasConceptScore W4378214624C147789679 @default.
- W4378214624 hasConceptScore W4378214624C151730666 @default.
- W4378214624 hasConceptScore W4378214624C152365726 @default.
- W4378214624 hasConceptScore W4378214624C159467904 @default.
- W4378214624 hasConceptScore W4378214624C185592680 @default.
- W4378214624 hasConceptScore W4378214624C192562407 @default.
- W4378214624 hasConceptScore W4378214624C205049153 @default.
- W4378214624 hasConceptScore W4378214624C29705727 @default.
- W4378214624 hasConceptScore W4378214624C41008148 @default.
- W4378214624 hasConceptScore W4378214624C49040817 @default.
- W4378214624 hasConceptScore W4378214624C62520636 @default.
- W4378214624 hasConceptScore W4378214624C79090758 @default.
- W4378214624 hasConceptScore W4378214624C8010536 @default.