Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378220199> ?p ?o ?g. }
- W4378220199 endingPage "36" @default.
- W4378220199 startingPage "21" @default.
- W4378220199 abstract "In this research, our objective is to identify the relationship between the date of seeding and the production of corn and sunflower crops. We evaluated the feasibility of using prediction models on a dataset of annual average crop yields and information on plant phenology, from several states of the US. After performing data analysis and preprocessing, we trained a selection of regression models. The best results were obtained for corn using HistGradientRegressor and XGBRegressor with R2 = 0.969 for both algorithms and MAE% = 8.945%, respectively MAE% = 9.423%. These results demonstrate a good potential for the problem of yield prediction based on year, state, average plating day, and crop type. This model will be further used, combined with meteorological data, to build an agricultural crop prediction model. Keywords: regression, yield prediction, seeding date, agriculture, XGBoostRegressor. " @default.
- W4378220199 created "2023-05-26" @default.
- W4378220199 creator A5022028583 @default.
- W4378220199 creator A5051822008 @default.
- W4378220199 creator A5062076371 @default.
- W4378220199 date "2023-06-02" @default.
- W4378220199 modified "2023-10-14" @default.
- W4378220199 title "Feasibility of Using Machine Learning Algorithms for Yield Prediction of Corn and Sunflower Crops Based on Seeding Date" @default.
- W4378220199 cites W2040014961 @default.
- W4378220199 cites W2138632244 @default.
- W4378220199 cites W2491751038 @default.
- W4378220199 cites W2548505086 @default.
- W4378220199 cites W2765682937 @default.
- W4378220199 cites W2794357443 @default.
- W4378220199 cites W2794792900 @default.
- W4378220199 cites W2803628821 @default.
- W4378220199 cites W2805142011 @default.
- W4378220199 cites W2883067517 @default.
- W4378220199 cites W2908839975 @default.
- W4378220199 cites W2915985821 @default.
- W4378220199 cites W2917226894 @default.
- W4378220199 cites W2924734659 @default.
- W4378220199 cites W2938861672 @default.
- W4378220199 cites W2953489985 @default.
- W4378220199 cites W2953657936 @default.
- W4378220199 cites W3005029250 @default.
- W4378220199 cites W3038172351 @default.
- W4378220199 cites W3086601713 @default.
- W4378220199 cites W3102476541 @default.
- W4378220199 cites W3120410471 @default.
- W4378220199 cites W3122928643 @default.
- W4378220199 cites W3165319944 @default.
- W4378220199 cites W3198066570 @default.
- W4378220199 cites W3212954144 @default.
- W4378220199 cites W4226371284 @default.
- W4378220199 cites W4285106518 @default.
- W4378220199 doi "https://doi.org/10.24193/subbi.2022.2.02" @default.
- W4378220199 hasPublicationYear "2023" @default.
- W4378220199 type Work @default.
- W4378220199 citedByCount "1" @default.
- W4378220199 countsByYear W43782201992023 @default.
- W4378220199 crossrefType "journal-article" @default.
- W4378220199 hasAuthorship W4378220199A5022028583 @default.
- W4378220199 hasAuthorship W4378220199A5051822008 @default.
- W4378220199 hasAuthorship W4378220199A5062076371 @default.
- W4378220199 hasBestOaLocation W43782201991 @default.
- W4378220199 hasConcept C11413529 @default.
- W4378220199 hasConcept C118518473 @default.
- W4378220199 hasConcept C119857082 @default.
- W4378220199 hasConcept C126343540 @default.
- W4378220199 hasConcept C134121241 @default.
- W4378220199 hasConcept C137580998 @default.
- W4378220199 hasConcept C152877465 @default.
- W4378220199 hasConcept C154945302 @default.
- W4378220199 hasConcept C166957645 @default.
- W4378220199 hasConcept C191897082 @default.
- W4378220199 hasConcept C192562407 @default.
- W4378220199 hasConcept C205649164 @default.
- W4378220199 hasConcept C2779197568 @default.
- W4378220199 hasConcept C33923547 @default.
- W4378220199 hasConcept C34736171 @default.
- W4378220199 hasConcept C36248471 @default.
- W4378220199 hasConcept C41008148 @default.
- W4378220199 hasConcept C45804977 @default.
- W4378220199 hasConcept C51417038 @default.
- W4378220199 hasConcept C6557445 @default.
- W4378220199 hasConcept C86803240 @default.
- W4378220199 hasConceptScore W4378220199C11413529 @default.
- W4378220199 hasConceptScore W4378220199C118518473 @default.
- W4378220199 hasConceptScore W4378220199C119857082 @default.
- W4378220199 hasConceptScore W4378220199C126343540 @default.
- W4378220199 hasConceptScore W4378220199C134121241 @default.
- W4378220199 hasConceptScore W4378220199C137580998 @default.
- W4378220199 hasConceptScore W4378220199C152877465 @default.
- W4378220199 hasConceptScore W4378220199C154945302 @default.
- W4378220199 hasConceptScore W4378220199C166957645 @default.
- W4378220199 hasConceptScore W4378220199C191897082 @default.
- W4378220199 hasConceptScore W4378220199C192562407 @default.
- W4378220199 hasConceptScore W4378220199C205649164 @default.
- W4378220199 hasConceptScore W4378220199C2779197568 @default.
- W4378220199 hasConceptScore W4378220199C33923547 @default.
- W4378220199 hasConceptScore W4378220199C34736171 @default.
- W4378220199 hasConceptScore W4378220199C36248471 @default.
- W4378220199 hasConceptScore W4378220199C41008148 @default.
- W4378220199 hasConceptScore W4378220199C45804977 @default.
- W4378220199 hasConceptScore W4378220199C51417038 @default.
- W4378220199 hasConceptScore W4378220199C6557445 @default.
- W4378220199 hasConceptScore W4378220199C86803240 @default.
- W4378220199 hasIssue "2" @default.
- W4378220199 hasLocation W43782201991 @default.
- W4378220199 hasOpenAccess W4378220199 @default.
- W4378220199 hasPrimaryLocation W43782201991 @default.
- W4378220199 hasRelatedWork W139018289 @default.
- W4378220199 hasRelatedWork W1979405749 @default.
- W4378220199 hasRelatedWork W2087113330 @default.
- W4378220199 hasRelatedWork W2108220365 @default.
- W4378220199 hasRelatedWork W2339839196 @default.
- W4378220199 hasRelatedWork W2382415340 @default.