Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378220361> ?p ?o ?g. }
- W4378220361 endingPage "426" @default.
- W4378220361 startingPage "426" @default.
- W4378220361 abstract "In the field of nonlinear optics, quantum mechanics, condensed matter physics, and wave propagation in rigid and other nonlinear instability phenomena, the nonlinear Schrödinger equation has significant applications. In this study, the soliton solutions of the space-time fractional cubic nonlinear Schrödinger equation with Kerr law nonlinearity are investigated using an extended direct algebraic method. The solutions are found in the form of hyperbolic, trigonometric, and rational functions. Among the established solutions, some exhibit wide spectral and typical characteristics, while others are standard. Various types of well-known solitons, including kink-shape, periodic, V-shape, and singular kink-shape solitons, have been extracted here. To gain insight into the internal formation of these phenomena, the obtained solutions have been depicted in two- and three-dimensional graphs with different parameter values. The obtained solitons can be employed to explain many complicated phenomena associated with this model." @default.
- W4378220361 created "2023-05-26" @default.
- W4378220361 creator A5003453003 @default.
- W4378220361 creator A5020654776 @default.
- W4378220361 creator A5041689394 @default.
- W4378220361 date "2023-05-25" @default.
- W4378220361 modified "2023-10-18" @default.
- W4378220361 title "The Extended Direct Algebraic Method for Extracting Analytical Solitons Solutions to the Cubic Nonlinear Schrödinger Equation Involving Beta Derivatives in Space and Time" @default.
- W4378220361 cites W2086396968 @default.
- W4378220361 cites W2267402960 @default.
- W4378220361 cites W2276891719 @default.
- W4378220361 cites W2324804892 @default.
- W4378220361 cites W2342136542 @default.
- W4378220361 cites W2402496109 @default.
- W4378220361 cites W2511734545 @default.
- W4378220361 cites W2768740029 @default.
- W4378220361 cites W2776850568 @default.
- W4378220361 cites W2792584165 @default.
- W4378220361 cites W2983475819 @default.
- W4378220361 cites W3005601776 @default.
- W4378220361 cites W3041437849 @default.
- W4378220361 cites W3042282945 @default.
- W4378220361 cites W3045350551 @default.
- W4378220361 cites W3094416719 @default.
- W4378220361 cites W3096305049 @default.
- W4378220361 cites W3110914724 @default.
- W4378220361 cites W3118334588 @default.
- W4378220361 cites W3134984106 @default.
- W4378220361 cites W3136094209 @default.
- W4378220361 cites W3136464105 @default.
- W4378220361 cites W3167604196 @default.
- W4378220361 cites W3168229094 @default.
- W4378220361 cites W3170463394 @default.
- W4378220361 cites W3176271071 @default.
- W4378220361 cites W3182844055 @default.
- W4378220361 cites W3192727715 @default.
- W4378220361 cites W3195461584 @default.
- W4378220361 cites W3208062390 @default.
- W4378220361 cites W3208724943 @default.
- W4378220361 cites W4200081738 @default.
- W4378220361 cites W4210536818 @default.
- W4378220361 cites W4221102633 @default.
- W4378220361 cites W4226354586 @default.
- W4378220361 cites W4281793897 @default.
- W4378220361 cites W4285329750 @default.
- W4378220361 cites W4285600288 @default.
- W4378220361 cites W4287093332 @default.
- W4378220361 cites W4305041703 @default.
- W4378220361 cites W4313515835 @default.
- W4378220361 cites W4313656158 @default.
- W4378220361 cites W4316662579 @default.
- W4378220361 cites W4317666223 @default.
- W4378220361 cites W4318480503 @default.
- W4378220361 cites W4376127073 @default.
- W4378220361 doi "https://doi.org/10.3390/fractalfract7060426" @default.
- W4378220361 hasPublicationYear "2023" @default.
- W4378220361 type Work @default.
- W4378220361 citedByCount "5" @default.
- W4378220361 countsByYear W43782203612023 @default.
- W4378220361 crossrefType "journal-article" @default.
- W4378220361 hasAuthorship W4378220361A5003453003 @default.
- W4378220361 hasAuthorship W4378220361A5020654776 @default.
- W4378220361 hasAuthorship W4378220361A5041689394 @default.
- W4378220361 hasBestOaLocation W43782203611 @default.
- W4378220361 hasConcept C121332964 @default.
- W4378220361 hasConcept C134306372 @default.
- W4378220361 hasConcept C138885662 @default.
- W4378220361 hasConcept C158622935 @default.
- W4378220361 hasConcept C178009071 @default.
- W4378220361 hasConcept C207821765 @default.
- W4378220361 hasConcept C2524010 @default.
- W4378220361 hasConcept C2778572836 @default.
- W4378220361 hasConcept C29001434 @default.
- W4378220361 hasConcept C33923547 @default.
- W4378220361 hasConcept C41895202 @default.
- W4378220361 hasConcept C62520636 @default.
- W4378220361 hasConcept C63036615 @default.
- W4378220361 hasConcept C74650414 @default.
- W4378220361 hasConcept C83774755 @default.
- W4378220361 hasConcept C87651913 @default.
- W4378220361 hasConcept C9376300 @default.
- W4378220361 hasConceptScore W4378220361C121332964 @default.
- W4378220361 hasConceptScore W4378220361C134306372 @default.
- W4378220361 hasConceptScore W4378220361C138885662 @default.
- W4378220361 hasConceptScore W4378220361C158622935 @default.
- W4378220361 hasConceptScore W4378220361C178009071 @default.
- W4378220361 hasConceptScore W4378220361C207821765 @default.
- W4378220361 hasConceptScore W4378220361C2524010 @default.
- W4378220361 hasConceptScore W4378220361C2778572836 @default.
- W4378220361 hasConceptScore W4378220361C29001434 @default.
- W4378220361 hasConceptScore W4378220361C33923547 @default.
- W4378220361 hasConceptScore W4378220361C41895202 @default.
- W4378220361 hasConceptScore W4378220361C62520636 @default.
- W4378220361 hasConceptScore W4378220361C63036615 @default.
- W4378220361 hasConceptScore W4378220361C74650414 @default.
- W4378220361 hasConceptScore W4378220361C83774755 @default.
- W4378220361 hasConceptScore W4378220361C87651913 @default.
- W4378220361 hasConceptScore W4378220361C9376300 @default.