Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378220512> ?p ?o ?g. }
- W4378220512 endingPage "18039" @default.
- W4378220512 startingPage "18021" @default.
- W4378220512 abstract "<abstract> <p>An intuitionistic hesitant fuzzy set is an extension of the fuzzy set which deals with uncertain information and vague environments. Multiple-attribute decision-making problems (MADM) are one of the emerging topics and an aggregation operator plays a vital role in the aggregate of different preferences to a single number. The Aczel-Alsina norm operations are significant terms that handle the impreciseness and undetermined data. In this paper, we build some novel aggregation operators for the different pairs of the intuitionistic hesitant fuzzy sets (IHFSs), namely as Aczel-Alsina average and geometric operators. Several characteristics of the proposed operators are also described in detail. Based on these operators, a multi-attribute decision-making algorithm is stated to solve the decision-making problems. A numerical example has been taken to display and validate the approach. A feasibility and comparative analysis with existing studies are performed to show its superiority.</p> </abstract>" @default.
- W4378220512 created "2023-05-26" @default.
- W4378220512 creator A5035994316 @default.
- W4378220512 creator A5036118764 @default.
- W4378220512 creator A5048041951 @default.
- W4378220512 creator A5051442365 @default.
- W4378220512 creator A5052455614 @default.
- W4378220512 creator A5054194585 @default.
- W4378220512 creator A5077790305 @default.
- W4378220512 creator A5085933596 @default.
- W4378220512 date "2023-01-01" @default.
- W4378220512 modified "2023-10-17" @default.
- W4378220512 title "Aczel-Alsina-based aggregation operators for intuitionistic hesitant fuzzy set environment and their application to multiple attribute decision-making process" @default.
- W4378220512 cites W1844859201 @default.
- W4378220512 cites W1978889792 @default.
- W4378220512 cites W1981107087 @default.
- W4378220512 cites W1985048994 @default.
- W4378220512 cites W1996900481 @default.
- W4378220512 cites W2043444342 @default.
- W4378220512 cites W2092580384 @default.
- W4378220512 cites W2131429285 @default.
- W4378220512 cites W2578456536 @default.
- W4378220512 cites W2953160093 @default.
- W4378220512 cites W3134923263 @default.
- W4378220512 cites W3150667673 @default.
- W4378220512 cites W3152952490 @default.
- W4378220512 cites W3167257086 @default.
- W4378220512 cites W3188278648 @default.
- W4378220512 cites W3201566509 @default.
- W4378220512 cites W3217511497 @default.
- W4378220512 cites W4211007335 @default.
- W4378220512 cites W4214837472 @default.
- W4378220512 cites W4221013669 @default.
- W4378220512 cites W4224261087 @default.
- W4378220512 cites W4234672050 @default.
- W4378220512 cites W4239165868 @default.
- W4378220512 cites W4281942507 @default.
- W4378220512 cites W4296010379 @default.
- W4378220512 cites W4296050352 @default.
- W4378220512 cites W4303649297 @default.
- W4378220512 cites W4311759249 @default.
- W4378220512 cites W4313579695 @default.
- W4378220512 cites W4319601729 @default.
- W4378220512 cites W4360615204 @default.
- W4378220512 cites W4362465869 @default.
- W4378220512 cites W4364377616 @default.
- W4378220512 doi "https://doi.org/10.3934/math.2023916" @default.
- W4378220512 hasPublicationYear "2023" @default.
- W4378220512 type Work @default.
- W4378220512 citedByCount "2" @default.
- W4378220512 countsByYear W43782205122023 @default.
- W4378220512 crossrefType "journal-article" @default.
- W4378220512 hasAuthorship W4378220512A5035994316 @default.
- W4378220512 hasAuthorship W4378220512A5036118764 @default.
- W4378220512 hasAuthorship W4378220512A5048041951 @default.
- W4378220512 hasAuthorship W4378220512A5051442365 @default.
- W4378220512 hasAuthorship W4378220512A5052455614 @default.
- W4378220512 hasAuthorship W4378220512A5054194585 @default.
- W4378220512 hasAuthorship W4378220512A5077790305 @default.
- W4378220512 hasAuthorship W4378220512A5085933596 @default.
- W4378220512 hasBestOaLocation W43782205121 @default.
- W4378220512 hasConcept C104317684 @default.
- W4378220512 hasConcept C124101348 @default.
- W4378220512 hasConcept C126255220 @default.
- W4378220512 hasConcept C154945302 @default.
- W4378220512 hasConcept C158448853 @default.
- W4378220512 hasConcept C159985019 @default.
- W4378220512 hasConcept C17020691 @default.
- W4378220512 hasConcept C177264268 @default.
- W4378220512 hasConcept C185592680 @default.
- W4378220512 hasConcept C192562407 @default.
- W4378220512 hasConcept C199360897 @default.
- W4378220512 hasConcept C2778029271 @default.
- W4378220512 hasConcept C33923547 @default.
- W4378220512 hasConcept C41008148 @default.
- W4378220512 hasConcept C42011625 @default.
- W4378220512 hasConcept C4679612 @default.
- W4378220512 hasConcept C55493867 @default.
- W4378220512 hasConcept C58166 @default.
- W4378220512 hasConcept C86339819 @default.
- W4378220512 hasConceptScore W4378220512C104317684 @default.
- W4378220512 hasConceptScore W4378220512C124101348 @default.
- W4378220512 hasConceptScore W4378220512C126255220 @default.
- W4378220512 hasConceptScore W4378220512C154945302 @default.
- W4378220512 hasConceptScore W4378220512C158448853 @default.
- W4378220512 hasConceptScore W4378220512C159985019 @default.
- W4378220512 hasConceptScore W4378220512C17020691 @default.
- W4378220512 hasConceptScore W4378220512C177264268 @default.
- W4378220512 hasConceptScore W4378220512C185592680 @default.
- W4378220512 hasConceptScore W4378220512C192562407 @default.
- W4378220512 hasConceptScore W4378220512C199360897 @default.
- W4378220512 hasConceptScore W4378220512C2778029271 @default.
- W4378220512 hasConceptScore W4378220512C33923547 @default.
- W4378220512 hasConceptScore W4378220512C41008148 @default.
- W4378220512 hasConceptScore W4378220512C42011625 @default.
- W4378220512 hasConceptScore W4378220512C4679612 @default.
- W4378220512 hasConceptScore W4378220512C55493867 @default.
- W4378220512 hasConceptScore W4378220512C58166 @default.