Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378221206> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4378221206 endingPage "688" @default.
- W4378221206 startingPage "674" @default.
- W4378221206 abstract "Researchers conducting longitudinal data analysis in psychology and the behavioral sciences have several statistical methods to choose from, most of which either require specialized software to conduct or advanced knowledge of statistical methods to inform the selection of the correct model options (e.g., correlation structure). One simple alternative to conventional longitudinal data analysis methods is to calculate the area under the curve (AUC) from repeated measures and then use this new variable in one’s model. The present study assessed the relative efficacy of two AUC measures: the AUC with respect to the ground (AUC-g) and the AUC with respect to the increase (AUC-i) in comparison to latent growth curve modeling (LGCM), a popular repeated measures data analysis method. Using data from the ongoing Panel Study of Income Dynamics (PSID), we assessed the effects of four predictor variables on repeated measures of social anxiety, using both the AUC and LGCM. We used the full information maximum likelihood (FIML) method to account for missing data in LGCM and multiple imputation to account for missing data in the calculation of both AUC measures. Extracting parameter estimates from these models, we next conducted Monte Carlo simulations to assess the parameter bias and power (two estimates of performance) of both methods in the same models, with sample sizes ranging from 741 to 50. The results using both AUC measures in the initial models paralleled those of LGCM, particularly with respect to the LGCM baseline. With respect to the simulations, both AUC measures preformed as well or even better than LGCM in all sample sizes assessed. These results suggest that the AUC may be a viable alternative to LGCM, especially for researchers with less access to the specialized software necessary to conduct LGCM." @default.
- W4378221206 created "2023-05-26" @default.
- W4378221206 creator A5016264214 @default.
- W4378221206 date "2023-05-25" @default.
- W4378221206 modified "2023-10-18" @default.
- W4378221206 title "Area under the Curve as an Alternative to Latent Growth Curve Modeling When Assessing the Effects of Predictor Variables on Repeated Measures of a Continuous Dependent Variable" @default.
- W4378221206 cites W2026322198 @default.
- W4378221206 cites W2027369775 @default.
- W4378221206 cites W2053563318 @default.
- W4378221206 cites W2064882878 @default.
- W4378221206 cites W2066057651 @default.
- W4378221206 cites W2079257116 @default.
- W4378221206 cites W2092444050 @default.
- W4378221206 cites W2100380498 @default.
- W4378221206 cites W2116739230 @default.
- W4378221206 cites W2147509803 @default.
- W4378221206 cites W2149860264 @default.
- W4378221206 cites W2156579478 @default.
- W4378221206 cites W2357216954 @default.
- W4378221206 cites W2480680997 @default.
- W4378221206 cites W2527729344 @default.
- W4378221206 cites W2617132254 @default.
- W4378221206 cites W2776195649 @default.
- W4378221206 cites W2890385461 @default.
- W4378221206 cites W3036195819 @default.
- W4378221206 cites W3171193519 @default.
- W4378221206 cites W4224918842 @default.
- W4378221206 cites W4284892632 @default.
- W4378221206 cites W4321378274 @default.
- W4378221206 doi "https://doi.org/10.3390/stats6020043" @default.
- W4378221206 hasPublicationYear "2023" @default.
- W4378221206 type Work @default.
- W4378221206 citedByCount "0" @default.
- W4378221206 crossrefType "journal-article" @default.
- W4378221206 hasAuthorship W4378221206A5016264214 @default.
- W4378221206 hasBestOaLocation W43782212061 @default.
- W4378221206 hasConcept C102959455 @default.
- W4378221206 hasConcept C105795698 @default.
- W4378221206 hasConcept C149782125 @default.
- W4378221206 hasConcept C192806908 @default.
- W4378221206 hasConcept C2776913854 @default.
- W4378221206 hasConcept C33923547 @default.
- W4378221206 hasConcept C41008148 @default.
- W4378221206 hasConcept C51167844 @default.
- W4378221206 hasConcept C65965080 @default.
- W4378221206 hasConcept C9357733 @default.
- W4378221206 hasConcept C93959086 @default.
- W4378221206 hasConceptScore W4378221206C102959455 @default.
- W4378221206 hasConceptScore W4378221206C105795698 @default.
- W4378221206 hasConceptScore W4378221206C149782125 @default.
- W4378221206 hasConceptScore W4378221206C192806908 @default.
- W4378221206 hasConceptScore W4378221206C2776913854 @default.
- W4378221206 hasConceptScore W4378221206C33923547 @default.
- W4378221206 hasConceptScore W4378221206C41008148 @default.
- W4378221206 hasConceptScore W4378221206C51167844 @default.
- W4378221206 hasConceptScore W4378221206C65965080 @default.
- W4378221206 hasConceptScore W4378221206C9357733 @default.
- W4378221206 hasConceptScore W4378221206C93959086 @default.
- W4378221206 hasIssue "2" @default.
- W4378221206 hasLocation W43782212061 @default.
- W4378221206 hasOpenAccess W4378221206 @default.
- W4378221206 hasPrimaryLocation W43782212061 @default.
- W4378221206 hasRelatedWork W2042538592 @default.
- W4378221206 hasRelatedWork W2087640072 @default.
- W4378221206 hasRelatedWork W2097775924 @default.
- W4378221206 hasRelatedWork W2162880285 @default.
- W4378221206 hasRelatedWork W2548022854 @default.
- W4378221206 hasRelatedWork W2791712238 @default.
- W4378221206 hasRelatedWork W2894762832 @default.
- W4378221206 hasRelatedWork W2899839253 @default.
- W4378221206 hasRelatedWork W3010001326 @default.
- W4378221206 hasRelatedWork W3025267042 @default.
- W4378221206 hasVolume "6" @default.
- W4378221206 isParatext "false" @default.
- W4378221206 isRetracted "false" @default.
- W4378221206 workType "article" @default.