Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378229463> ?p ?o ?g. }
- W4378229463 endingPage "2723" @default.
- W4378229463 startingPage "2723" @default.
- W4378229463 abstract "Recent advances in deep learning (DL) and unmanned aerial vehicle (UAV) technologies have made it possible to monitor salt marshes more efficiently and precisely. However, studies have rarely compared the classification performance of DL with the pixel-based method for coastal wetland monitoring using UAV data. In particular, many studies have been conducted at the landscape level; however, little is known about the performance of species discrimination in very small patches and in mixed vegetation. We constructed a dataset based on UAV-RGB data and compared the performance of pixel-based and DL methods for five scenarios (combinations of annotation type and patch size) in the classification of salt marsh vegetation. Maximum likelihood, a pixel-based classification method, showed the lowest overall accuracy of 73%, whereas the U-Net classification method achieved over 90% accuracy in all classification scenarios. As expected, in a comparison of pixel-based and DL methods, the DL approach achieved the most accurate classification results. Unexpectedly, there was no significant difference in overall accuracy between the two annotation types and labeling data sizes in this study. However, when comparing the classification results in detail, we confirmed that polygon-type annotation was more effective for mixed-vegetation classification than the bounding-box type. Moreover, the smaller size of labeling data was more effective for detecting small vegetation patches. Our results suggest that a combination of UAV-RGB data and DL can facilitate the accurate mapping of coastal salt marsh vegetation at the local scale." @default.
- W4378229463 created "2023-05-26" @default.
- W4378229463 creator A5004564732 @default.
- W4378229463 creator A5031954156 @default.
- W4378229463 creator A5046356985 @default.
- W4378229463 creator A5058067468 @default.
- W4378229463 creator A5058452154 @default.
- W4378229463 creator A5058525162 @default.
- W4378229463 creator A5076883246 @default.
- W4378229463 date "2023-05-24" @default.
- W4378229463 modified "2023-09-26" @default.
- W4378229463 title "Deep Learning of High-Resolution Unmanned Aerial Vehicle Imagery for Classifying Halophyte Species: A Comparative Study for Small Patches and Mixed Vegetation" @default.
- W4378229463 cites W1602811519 @default.
- W4378229463 cites W1901129140 @default.
- W4378229463 cites W1971637299 @default.
- W4378229463 cites W1978487267 @default.
- W4378229463 cites W1990988039 @default.
- W4378229463 cites W2083710447 @default.
- W4378229463 cites W2097833259 @default.
- W4378229463 cites W2104301422 @default.
- W4378229463 cites W2117770163 @default.
- W4378229463 cites W2119848747 @default.
- W4378229463 cites W2125409799 @default.
- W4378229463 cites W2126154792 @default.
- W4378229463 cites W2153866923 @default.
- W4378229463 cites W2478243450 @default.
- W4378229463 cites W2567495574 @default.
- W4378229463 cites W2604409186 @default.
- W4378229463 cites W2752983793 @default.
- W4378229463 cites W2770984369 @default.
- W4378229463 cites W2776265025 @default.
- W4378229463 cites W2794477125 @default.
- W4378229463 cites W2805510045 @default.
- W4378229463 cites W2886825647 @default.
- W4378229463 cites W2887185672 @default.
- W4378229463 cites W2901750875 @default.
- W4378229463 cites W2941114027 @default.
- W4378229463 cites W3049157029 @default.
- W4378229463 cites W3087438473 @default.
- W4378229463 cites W3112344741 @default.
- W4378229463 cites W3149106451 @default.
- W4378229463 cites W3191570047 @default.
- W4378229463 cites W3201112898 @default.
- W4378229463 cites W3208653382 @default.
- W4378229463 cites W4214519793 @default.
- W4378229463 cites W4288068855 @default.
- W4378229463 cites W4292493577 @default.
- W4378229463 cites W4309489405 @default.
- W4378229463 cites W4309586755 @default.
- W4378229463 doi "https://doi.org/10.3390/rs15112723" @default.
- W4378229463 hasPublicationYear "2023" @default.
- W4378229463 type Work @default.
- W4378229463 citedByCount "0" @default.
- W4378229463 crossrefType "journal-article" @default.
- W4378229463 hasAuthorship W4378229463A5004564732 @default.
- W4378229463 hasAuthorship W4378229463A5031954156 @default.
- W4378229463 hasAuthorship W4378229463A5046356985 @default.
- W4378229463 hasAuthorship W4378229463A5058067468 @default.
- W4378229463 hasAuthorship W4378229463A5058452154 @default.
- W4378229463 hasAuthorship W4378229463A5058525162 @default.
- W4378229463 hasAuthorship W4378229463A5076883246 @default.
- W4378229463 hasBestOaLocation W43782294631 @default.
- W4378229463 hasConcept C111368507 @default.
- W4378229463 hasConcept C127313418 @default.
- W4378229463 hasConcept C129513315 @default.
- W4378229463 hasConcept C142724271 @default.
- W4378229463 hasConcept C154945302 @default.
- W4378229463 hasConcept C160633673 @default.
- W4378229463 hasConcept C18903297 @default.
- W4378229463 hasConcept C2776054349 @default.
- W4378229463 hasConcept C2776133958 @default.
- W4378229463 hasConcept C3020199158 @default.
- W4378229463 hasConcept C39432304 @default.
- W4378229463 hasConcept C41008148 @default.
- W4378229463 hasConcept C62649853 @default.
- W4378229463 hasConcept C67268981 @default.
- W4378229463 hasConcept C67715294 @default.
- W4378229463 hasConcept C71924100 @default.
- W4378229463 hasConcept C7616482 @default.
- W4378229463 hasConcept C82990744 @default.
- W4378229463 hasConcept C86803240 @default.
- W4378229463 hasConceptScore W4378229463C111368507 @default.
- W4378229463 hasConceptScore W4378229463C127313418 @default.
- W4378229463 hasConceptScore W4378229463C129513315 @default.
- W4378229463 hasConceptScore W4378229463C142724271 @default.
- W4378229463 hasConceptScore W4378229463C154945302 @default.
- W4378229463 hasConceptScore W4378229463C160633673 @default.
- W4378229463 hasConceptScore W4378229463C18903297 @default.
- W4378229463 hasConceptScore W4378229463C2776054349 @default.
- W4378229463 hasConceptScore W4378229463C2776133958 @default.
- W4378229463 hasConceptScore W4378229463C3020199158 @default.
- W4378229463 hasConceptScore W4378229463C39432304 @default.
- W4378229463 hasConceptScore W4378229463C41008148 @default.
- W4378229463 hasConceptScore W4378229463C62649853 @default.
- W4378229463 hasConceptScore W4378229463C67268981 @default.
- W4378229463 hasConceptScore W4378229463C67715294 @default.
- W4378229463 hasConceptScore W4378229463C71924100 @default.
- W4378229463 hasConceptScore W4378229463C7616482 @default.