Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378231489> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4378231489 abstract "Summary The frequency-dependent amplitude-versus-offset (FAVO) method has great potential for reservoir parameters estimation. However, it is hard work to establish the FAVO inversion model. It is also difficult to solve the inverse problem for FAVO by traditional methods. In this study, we propose a new workflow to extract the reservoir fluid parameters from the FAVO gathers based on a deep neural network (DNN). The proposed method is applied to predict the tight sandstone gas reservoir properties. Within the framework of this workflow, we generate the synthetic FAVO gathers. First, we establish the petrophysical model using the logging interpretation results. Then, the Backus average, Biot-Gassmann fluid substitution, velocity dispersion equations of the binary medium, and Rüger equation are applied to generate the FAVO reflectivity series. By introducing the DNN-based seismic wavelet estimation method and the optimal basic wavelet transform (OBWT), we can generate different frequency components of the seismic wavelet. These different frequency components are used to convolve the FAVO reflectivity series to obtain FAVO gathers that are used to generate the sample pairs for DNN training. At the same time, the OBWT is used to decompose the real AVO gathers to get the FAVO gathers. Finally, to testify its validity and effectiveness, the proposed workflow is used to a field data." @default.
- W4378231489 created "2023-05-26" @default.
- W4378231489 creator A5004032177 @default.
- W4378231489 creator A5044599355 @default.
- W4378231489 creator A5077552109 @default.
- W4378231489 creator A5084899526 @default.
- W4378231489 date "2023-01-01" @default.
- W4378231489 modified "2023-09-26" @default.
- W4378231489 title "Frequency-dependent AVO Inversion Via Deep Neural Network and Application on Tight Reservoir Parameters Prediction" @default.
- W4378231489 doi "https://doi.org/10.3997/2214-4609.202310386" @default.
- W4378231489 hasPublicationYear "2023" @default.
- W4378231489 type Work @default.
- W4378231489 citedByCount "0" @default.
- W4378231489 crossrefType "proceedings-article" @default.
- W4378231489 hasAuthorship W4378231489A5004032177 @default.
- W4378231489 hasAuthorship W4378231489A5044599355 @default.
- W4378231489 hasAuthorship W4378231489A5077552109 @default.
- W4378231489 hasAuthorship W4378231489A5084899526 @default.
- W4378231489 hasConcept C11413529 @default.
- W4378231489 hasConcept C127313418 @default.
- W4378231489 hasConcept C14641988 @default.
- W4378231489 hasConcept C154945302 @default.
- W4378231489 hasConcept C159737794 @default.
- W4378231489 hasConcept C165205528 @default.
- W4378231489 hasConcept C177212765 @default.
- W4378231489 hasConcept C187320778 @default.
- W4378231489 hasConcept C1893757 @default.
- W4378231489 hasConcept C2524010 @default.
- W4378231489 hasConcept C2781294565 @default.
- W4378231489 hasConcept C33923547 @default.
- W4378231489 hasConcept C35817400 @default.
- W4378231489 hasConcept C39267094 @default.
- W4378231489 hasConcept C41008148 @default.
- W4378231489 hasConcept C46293882 @default.
- W4378231489 hasConcept C47432892 @default.
- W4378231489 hasConcept C50644808 @default.
- W4378231489 hasConcept C6648577 @default.
- W4378231489 hasConcept C77088390 @default.
- W4378231489 hasConcept C77928131 @default.
- W4378231489 hasConcept C78762247 @default.
- W4378231489 hasConcept C8058405 @default.
- W4378231489 hasConceptScore W4378231489C11413529 @default.
- W4378231489 hasConceptScore W4378231489C127313418 @default.
- W4378231489 hasConceptScore W4378231489C14641988 @default.
- W4378231489 hasConceptScore W4378231489C154945302 @default.
- W4378231489 hasConceptScore W4378231489C159737794 @default.
- W4378231489 hasConceptScore W4378231489C165205528 @default.
- W4378231489 hasConceptScore W4378231489C177212765 @default.
- W4378231489 hasConceptScore W4378231489C187320778 @default.
- W4378231489 hasConceptScore W4378231489C1893757 @default.
- W4378231489 hasConceptScore W4378231489C2524010 @default.
- W4378231489 hasConceptScore W4378231489C2781294565 @default.
- W4378231489 hasConceptScore W4378231489C33923547 @default.
- W4378231489 hasConceptScore W4378231489C35817400 @default.
- W4378231489 hasConceptScore W4378231489C39267094 @default.
- W4378231489 hasConceptScore W4378231489C41008148 @default.
- W4378231489 hasConceptScore W4378231489C46293882 @default.
- W4378231489 hasConceptScore W4378231489C47432892 @default.
- W4378231489 hasConceptScore W4378231489C50644808 @default.
- W4378231489 hasConceptScore W4378231489C6648577 @default.
- W4378231489 hasConceptScore W4378231489C77088390 @default.
- W4378231489 hasConceptScore W4378231489C77928131 @default.
- W4378231489 hasConceptScore W4378231489C78762247 @default.
- W4378231489 hasConceptScore W4378231489C8058405 @default.
- W4378231489 hasLocation W43782314891 @default.
- W4378231489 hasOpenAccess W4378231489 @default.
- W4378231489 hasPrimaryLocation W43782314891 @default.
- W4378231489 hasRelatedWork W2318625745 @default.
- W4378231489 hasRelatedWork W2910272176 @default.
- W4378231489 hasRelatedWork W3035681571 @default.
- W4378231489 hasRelatedWork W3106695078 @default.
- W4378231489 hasRelatedWork W3124241525 @default.
- W4378231489 hasRelatedWork W3215723174 @default.
- W4378231489 hasRelatedWork W4200602213 @default.
- W4378231489 hasRelatedWork W4324336280 @default.
- W4378231489 hasRelatedWork W2188885915 @default.
- W4378231489 hasRelatedWork W3094524169 @default.
- W4378231489 isParatext "false" @default.
- W4378231489 isRetracted "false" @default.
- W4378231489 workType "article" @default.