Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378364377> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4378364377 endingPage "112" @default.
- W4378364377 startingPage "109" @default.
- W4378364377 abstract "Lung ultrasound can evaluate for pulmonary edema, but data suggest moderate inter-rater reliability among users. Artificial intelligence (AI) has been proposed as a model to increase the accuracy of B line interpretation. Early data suggest a benefit among more novice users, but data are limited among average residency-trained physicians. The objective of this study was to compare the accuracy of AI versus real-time physician assessment for B lines. This was a prospective, observational study of adult Emergency Department patients presenting with suspected pulmonary edema. We excluded patients with active COVID-19 or interstitial lung disease. A physician performed thoracic ultrasound using the 12-zone technique. The physician recorded a video clip in each zone and provided an interpretation of positive (≥3 B lines or a wide, dense B line) or negative (<3 B lines and the absence of a wide, dense B line) for pulmonary edema based upon the real-time assessment. A research assistant then utilized the AI program to analyze the same saved clip to determine if it was positive versus negative for pulmonary edema. The physician sonographer was blinded to this assessment. The video clips were then reviewed independently by two expert physician sonographers (ultrasound leaders with >10,000 prior ultrasound image reviews) who were blinded to the AI and initial determinations. The experts reviewed all discordant values and reached consensus on whether the field (i.e., the area of lung between two adjacent ribs) was positive or negative using the same criteria as defined above, which served as the gold standard. 71 patients were included in the study (56.3% female; mean BMI: 33.4 [95% CI 30.6–36.2]), with 88.3% (752/852) of lung fields being of adequate quality for assessment. Overall, 36.1% of lung fields were positive for pulmonary edema. The physician was 96.7% (95% CI 93.8%–98.5%) sensitive and 79.1% (95% CI 75.1%–82.6%) specific. The AI software was 95.6% (95% CI 92.4%–97.7%) sensitive and 64.1% (95% CI 59.8%–68.5%) specific. Both the physician and AI software were highly sensitive, though the physician was more specific. Future research should identify which factors are associated with increased diagnostic accuracy." @default.
- W4378364377 created "2023-05-27" @default.
- W4378364377 creator A5018567151 @default.
- W4378364377 creator A5052233022 @default.
- W4378364377 creator A5063646843 @default.
- W4378364377 creator A5064440795 @default.
- W4378364377 creator A5092023178 @default.
- W4378364377 creator A5092023179 @default.
- W4378364377 date "2023-08-01" @default.
- W4378364377 modified "2023-09-25" @default.
- W4378364377 title "Comparison of artificial intelligence versus real-time physician assessment of pulmonary edema with lung ultrasound" @default.
- W4378364377 cites W1685875503 @default.
- W4378364377 cites W2020288469 @default.
- W4378364377 cites W2047925380 @default.
- W4378364377 cites W2052379647 @default.
- W4378364377 cites W2059796825 @default.
- W4378364377 cites W2121285167 @default.
- W4378364377 cites W2122056661 @default.
- W4378364377 cites W2132663708 @default.
- W4378364377 cites W2150835094 @default.
- W4378364377 cites W2215874248 @default.
- W4378364377 cites W2807013708 @default.
- W4378364377 cites W2911554808 @default.
- W4378364377 cites W3003223084 @default.
- W4378364377 cites W3088265194 @default.
- W4378364377 cites W3111047096 @default.
- W4378364377 cites W3133600711 @default.
- W4378364377 cites W3176644691 @default.
- W4378364377 cites W3178104743 @default.
- W4378364377 cites W3199914355 @default.
- W4378364377 cites W4200486390 @default.
- W4378364377 cites W4211226346 @default.
- W4378364377 cites W4225277464 @default.
- W4378364377 cites W4229042765 @default.
- W4378364377 cites W4283838069 @default.
- W4378364377 cites W4321213223 @default.
- W4378364377 doi "https://doi.org/10.1016/j.ajem.2023.05.029" @default.
- W4378364377 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37269797" @default.
- W4378364377 hasPublicationYear "2023" @default.
- W4378364377 type Work @default.
- W4378364377 citedByCount "1" @default.
- W4378364377 countsByYear W43783643772023 @default.
- W4378364377 crossrefType "journal-article" @default.
- W4378364377 hasAuthorship W4378364377A5018567151 @default.
- W4378364377 hasAuthorship W4378364377A5052233022 @default.
- W4378364377 hasAuthorship W4378364377A5063646843 @default.
- W4378364377 hasAuthorship W4378364377A5064440795 @default.
- W4378364377 hasAuthorship W4378364377A5092023178 @default.
- W4378364377 hasAuthorship W4378364377A5092023179 @default.
- W4378364377 hasConcept C126322002 @default.
- W4378364377 hasConcept C126838900 @default.
- W4378364377 hasConcept C141071460 @default.
- W4378364377 hasConcept C143753070 @default.
- W4378364377 hasConcept C194828623 @default.
- W4378364377 hasConcept C23131810 @default.
- W4378364377 hasConcept C2776468924 @default.
- W4378364377 hasConcept C2777714996 @default.
- W4378364377 hasConcept C2778739407 @default.
- W4378364377 hasConcept C2778941581 @default.
- W4378364377 hasConcept C71924100 @default.
- W4378364377 hasConceptScore W4378364377C126322002 @default.
- W4378364377 hasConceptScore W4378364377C126838900 @default.
- W4378364377 hasConceptScore W4378364377C141071460 @default.
- W4378364377 hasConceptScore W4378364377C143753070 @default.
- W4378364377 hasConceptScore W4378364377C194828623 @default.
- W4378364377 hasConceptScore W4378364377C23131810 @default.
- W4378364377 hasConceptScore W4378364377C2776468924 @default.
- W4378364377 hasConceptScore W4378364377C2777714996 @default.
- W4378364377 hasConceptScore W4378364377C2778739407 @default.
- W4378364377 hasConceptScore W4378364377C2778941581 @default.
- W4378364377 hasConceptScore W4378364377C71924100 @default.
- W4378364377 hasFunder F4320309940 @default.
- W4378364377 hasLocation W43783643771 @default.
- W4378364377 hasLocation W43783643772 @default.
- W4378364377 hasOpenAccess W4378364377 @default.
- W4378364377 hasPrimaryLocation W43783643771 @default.
- W4378364377 hasRelatedWork W2059545205 @default.
- W4378364377 hasRelatedWork W2094291310 @default.
- W4378364377 hasRelatedWork W2174001346 @default.
- W4378364377 hasRelatedWork W2275730367 @default.
- W4378364377 hasRelatedWork W2412288834 @default.
- W4378364377 hasRelatedWork W2765980456 @default.
- W4378364377 hasRelatedWork W2976382042 @default.
- W4378364377 hasRelatedWork W3111892599 @default.
- W4378364377 hasRelatedWork W4378364377 @default.
- W4378364377 hasRelatedWork W4386015189 @default.
- W4378364377 hasVolume "70" @default.
- W4378364377 isParatext "false" @default.
- W4378364377 isRetracted "false" @default.
- W4378364377 workType "article" @default.