Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378373409> ?p ?o ?g. }
- W4378373409 endingPage "14591" @default.
- W4378373409 startingPage "14583" @default.
- W4378373409 abstract "In recent years, graph signal processing (GSP) has attracted much attention due to its ability to model irregular and interactive data generated by wireless sensor networks (WSNs). However, there is no practical method to deal with the problem of modeling nonlinear systems in non-Gaussian noise environments. Given that the maximum correntropy criterion (MCC) exhibits robustness to impulsive and non-Gaussian noise, this article introduces it into the graph kernel adaptive filtering (KAF) algorithm and develops a graph diffusion kernel MCC (GDKMCC) algorithm. To suppress the problem of the infinite growth of the filter coefficient vector of the proposed algorithm, a pretrained dictionary (PD) method is used in this article. In addition, the mean-square transient behavior and the convergence condition of the GDKMCC-PD algorithm are also provided under some assumptions. Finally, the simulation results verify the superiority of the proposed algorithm in modeling nonlinear systems under non-Gaussian noise environments and the correctness of the theoretical model." @default.
- W4378373409 created "2023-05-27" @default.
- W4378373409 creator A5050937458 @default.
- W4378373409 creator A5083155926 @default.
- W4378373409 creator A5089002078 @default.
- W4378373409 date "2023-07-01" @default.
- W4378373409 modified "2023-10-14" @default.
- W4378373409 title "Graph Diffusion Kernel Maximum Correntropy Criterion Over Sensor Network and Its Performance Analysis" @default.
- W4378373409 cites W1983094434 @default.
- W4378373409 cites W1986580492 @default.
- W4378373409 cites W2022669094 @default.
- W4378373409 cites W2026581470 @default.
- W4378373409 cites W2120315477 @default.
- W4378373409 cites W2121820607 @default.
- W4378373409 cites W2122021878 @default.
- W4378373409 cites W2133915234 @default.
- W4378373409 cites W2135160607 @default.
- W4378373409 cites W2153290280 @default.
- W4378373409 cites W2167932108 @default.
- W4378373409 cites W2579153588 @default.
- W4378373409 cites W2740138510 @default.
- W4378373409 cites W2890187679 @default.
- W4378373409 cites W2891799747 @default.
- W4378373409 cites W2963157432 @default.
- W4378373409 cites W2973534848 @default.
- W4378373409 cites W2977861416 @default.
- W4378373409 cites W3008420190 @default.
- W4378373409 cites W3013192954 @default.
- W4378373409 cites W3098927376 @default.
- W4378373409 cites W3115714200 @default.
- W4378373409 cites W3120190303 @default.
- W4378373409 cites W4224086155 @default.
- W4378373409 cites W4285817717 @default.
- W4378373409 cites W4293704302 @default.
- W4378373409 cites W4295855963 @default.
- W4378373409 cites W4323644189 @default.
- W4378373409 doi "https://doi.org/10.1109/jsen.2023.3279293" @default.
- W4378373409 hasPublicationYear "2023" @default.
- W4378373409 type Work @default.
- W4378373409 citedByCount "0" @default.
- W4378373409 crossrefType "journal-article" @default.
- W4378373409 hasAuthorship W4378373409A5050937458 @default.
- W4378373409 hasAuthorship W4378373409A5083155926 @default.
- W4378373409 hasAuthorship W4378373409A5089002078 @default.
- W4378373409 hasConcept C102248274 @default.
- W4378373409 hasConcept C104317684 @default.
- W4378373409 hasConcept C11413529 @default.
- W4378373409 hasConcept C114614502 @default.
- W4378373409 hasConcept C121332964 @default.
- W4378373409 hasConcept C132525143 @default.
- W4378373409 hasConcept C158622935 @default.
- W4378373409 hasConcept C163716315 @default.
- W4378373409 hasConcept C185592680 @default.
- W4378373409 hasConcept C24590314 @default.
- W4378373409 hasConcept C31258907 @default.
- W4378373409 hasConcept C33923547 @default.
- W4378373409 hasConcept C41008148 @default.
- W4378373409 hasConcept C4199805 @default.
- W4378373409 hasConcept C55439883 @default.
- W4378373409 hasConcept C55493867 @default.
- W4378373409 hasConcept C62520636 @default.
- W4378373409 hasConcept C63479239 @default.
- W4378373409 hasConcept C74193536 @default.
- W4378373409 hasConcept C80444323 @default.
- W4378373409 hasConcept C88230418 @default.
- W4378373409 hasConceptScore W4378373409C102248274 @default.
- W4378373409 hasConceptScore W4378373409C104317684 @default.
- W4378373409 hasConceptScore W4378373409C11413529 @default.
- W4378373409 hasConceptScore W4378373409C114614502 @default.
- W4378373409 hasConceptScore W4378373409C121332964 @default.
- W4378373409 hasConceptScore W4378373409C132525143 @default.
- W4378373409 hasConceptScore W4378373409C158622935 @default.
- W4378373409 hasConceptScore W4378373409C163716315 @default.
- W4378373409 hasConceptScore W4378373409C185592680 @default.
- W4378373409 hasConceptScore W4378373409C24590314 @default.
- W4378373409 hasConceptScore W4378373409C31258907 @default.
- W4378373409 hasConceptScore W4378373409C33923547 @default.
- W4378373409 hasConceptScore W4378373409C41008148 @default.
- W4378373409 hasConceptScore W4378373409C4199805 @default.
- W4378373409 hasConceptScore W4378373409C55439883 @default.
- W4378373409 hasConceptScore W4378373409C55493867 @default.
- W4378373409 hasConceptScore W4378373409C62520636 @default.
- W4378373409 hasConceptScore W4378373409C63479239 @default.
- W4378373409 hasConceptScore W4378373409C74193536 @default.
- W4378373409 hasConceptScore W4378373409C80444323 @default.
- W4378373409 hasConceptScore W4378373409C88230418 @default.
- W4378373409 hasFunder F4320321001 @default.
- W4378373409 hasFunder F4320335787 @default.
- W4378373409 hasIssue "13" @default.
- W4378373409 hasLocation W43783734091 @default.
- W4378373409 hasOpenAccess W4378373409 @default.
- W4378373409 hasPrimaryLocation W43783734091 @default.
- W4378373409 hasRelatedWork W2014013574 @default.
- W4378373409 hasRelatedWork W2087200833 @default.
- W4378373409 hasRelatedWork W2547119797 @default.
- W4378373409 hasRelatedWork W2760523485 @default.
- W4378373409 hasRelatedWork W2948805184 @default.
- W4378373409 hasRelatedWork W3115334024 @default.