Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378375212> ?p ?o ?g. }
- W4378375212 endingPage "1880" @default.
- W4378375212 startingPage "1868" @default.
- W4378375212 abstract "Abstract A novel approach for qualitative seasonal forecast of precipitation at a basin scale is presented as significant enhancement in seasonal forecast at regional and country scales in India. The process utilizes empirical and typically lagged relationships between target variables of interest, namely precipitation at the basin level and various large-scale climate predictors (LSCPs). A total of 14 LSCPs have been considered for the seasonal forecast of precipitation with lead times of 1, 2, and 3 months in the Kosi Basin, India. Random split training and testing were conducted on seven machine-learning (ML) models using a potential predictor dataset for model selection. The Logistic Regression (LR) model was adopted since it had the highest mean accuracy score compared to the remaining six ML models. The LR model has been optimized by testing it on all possible combinations of potential predictors using Leave-One-Out Cross-Validation (CV) scheme. The resulting Seasonal Prediction Model (SPM) provides the probability of each tercile categorized as Above Normal (AN), Normal (N), and Below Normal (BN). The model has been evaluated using various metrics." @default.
- W4378375212 created "2023-05-27" @default.
- W4378375212 creator A5011748399 @default.
- W4378375212 creator A5017749931 @default.
- W4378375212 creator A5067294165 @default.
- W4378375212 creator A5084388884 @default.
- W4378375212 date "2023-05-26" @default.
- W4378375212 modified "2023-09-26" @default.
- W4378375212 title "Seasonal precipitation forecasting for water management in the Kosi Basin, India using large-scale climate predictors" @default.
- W4378375212 cites W1580513987 @default.
- W4378375212 cites W1885915229 @default.
- W4378375212 cites W1970020090 @default.
- W4378375212 cites W1971021504 @default.
- W4378375212 cites W1976917637 @default.
- W4378375212 cites W1981553906 @default.
- W4378375212 cites W2000436031 @default.
- W4378375212 cites W2001104269 @default.
- W4378375212 cites W2001991385 @default.
- W4378375212 cites W2013805629 @default.
- W4378375212 cites W2024523255 @default.
- W4378375212 cites W2031918807 @default.
- W4378375212 cites W2038041773 @default.
- W4378375212 cites W2038821158 @default.
- W4378375212 cites W2049676292 @default.
- W4378375212 cites W2076241402 @default.
- W4378375212 cites W2082122402 @default.
- W4378375212 cites W2082382823 @default.
- W4378375212 cites W2123721791 @default.
- W4378375212 cites W2144824989 @default.
- W4378375212 cites W2162547513 @default.
- W4378375212 cites W2172331698 @default.
- W4378375212 cites W2173049227 @default.
- W4378375212 cites W2531416169 @default.
- W4378375212 cites W2782004273 @default.
- W4378375212 cites W2797500687 @default.
- W4378375212 cites W2946366615 @default.
- W4378375212 cites W2988198700 @default.
- W4378375212 cites W3021052705 @default.
- W4378375212 cites W3036907729 @default.
- W4378375212 cites W3038061982 @default.
- W4378375212 cites W3215668777 @default.
- W4378375212 cites W4236362309 @default.
- W4378375212 cites W595224392 @default.
- W4378375212 doi "https://doi.org/10.2166/wcc.2023.479" @default.
- W4378375212 hasPublicationYear "2023" @default.
- W4378375212 type Work @default.
- W4378375212 citedByCount "0" @default.
- W4378375212 crossrefType "journal-article" @default.
- W4378375212 hasAuthorship W4378375212A5011748399 @default.
- W4378375212 hasAuthorship W4378375212A5017749931 @default.
- W4378375212 hasAuthorship W4378375212A5067294165 @default.
- W4378375212 hasAuthorship W4378375212A5084388884 @default.
- W4378375212 hasBestOaLocation W43783752121 @default.
- W4378375212 hasConcept C105795698 @default.
- W4378375212 hasConcept C107054158 @default.
- W4378375212 hasConcept C109007969 @default.
- W4378375212 hasConcept C127313418 @default.
- W4378375212 hasConcept C140178040 @default.
- W4378375212 hasConcept C151730666 @default.
- W4378375212 hasConcept C151956035 @default.
- W4378375212 hasConcept C153294291 @default.
- W4378375212 hasConcept C205649164 @default.
- W4378375212 hasConcept C2778755073 @default.
- W4378375212 hasConcept C33923547 @default.
- W4378375212 hasConcept C39432304 @default.
- W4378375212 hasConcept C49204034 @default.
- W4378375212 hasConcept C58640448 @default.
- W4378375212 hasConceptScore W4378375212C105795698 @default.
- W4378375212 hasConceptScore W4378375212C107054158 @default.
- W4378375212 hasConceptScore W4378375212C109007969 @default.
- W4378375212 hasConceptScore W4378375212C127313418 @default.
- W4378375212 hasConceptScore W4378375212C140178040 @default.
- W4378375212 hasConceptScore W4378375212C151730666 @default.
- W4378375212 hasConceptScore W4378375212C151956035 @default.
- W4378375212 hasConceptScore W4378375212C153294291 @default.
- W4378375212 hasConceptScore W4378375212C205649164 @default.
- W4378375212 hasConceptScore W4378375212C2778755073 @default.
- W4378375212 hasConceptScore W4378375212C33923547 @default.
- W4378375212 hasConceptScore W4378375212C39432304 @default.
- W4378375212 hasConceptScore W4378375212C49204034 @default.
- W4378375212 hasConceptScore W4378375212C58640448 @default.
- W4378375212 hasIssue "6" @default.
- W4378375212 hasLocation W43783752121 @default.
- W4378375212 hasOpenAccess W4378375212 @default.
- W4378375212 hasPrimaryLocation W43783752121 @default.
- W4378375212 hasRelatedWork W2042164530 @default.
- W4378375212 hasRelatedWork W2105930180 @default.
- W4378375212 hasRelatedWork W2161549781 @default.
- W4378375212 hasRelatedWork W2364948917 @default.
- W4378375212 hasRelatedWork W2367598181 @default.
- W4378375212 hasRelatedWork W2377819441 @default.
- W4378375212 hasRelatedWork W2991528548 @default.
- W4378375212 hasRelatedWork W4200229308 @default.
- W4378375212 hasRelatedWork W4377247768 @default.
- W4378375212 hasRelatedWork W4382701790 @default.
- W4378375212 hasVolume "14" @default.
- W4378375212 isParatext "false" @default.
- W4378375212 isRetracted "false" @default.