Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378448432> ?p ?o ?g. }
- W4378448432 endingPage "212" @default.
- W4378448432 startingPage "191" @default.
- W4378448432 abstract "Soil salinization is one of the major land degradation processes spread over millions of hectares of global land. Hyperspectral Remote Sensing (HRS) coupled with modern data mining approaches help in real-time and cost-effective assessment or monitoring of salt-affected soils. This study aimed at predicting soil salinity across five sites in India using the Airborne Visible-Infrared Imaging Spectrometer - Next Generation (AVIRIS-NG) data in low to moderately salt-affected cropland soils. We have identified four unique spectral absorption features having sensitivity towards soil salinity through a hybrid feature selection algorithm. Soil electrical conductivity (EC) was estimated using different machine learning (ML) based models such as random forest (RF), gradient boosting machines (GBM), and deep learning (DL). An ensemble of RF and DL models showed the best performance with the coefficient of determination (R2) of 0.89 and 0.55 and normalized root-mean-squared error of 0.15 and 0.16 in training and test datasets, respectively. We also proposed a new hyperspectral soil salinity index using Shannon entropy-based aggregation of selected absorption features. The newly proposed index outperformed other majorly used remote sensing-based salinity indices. It also showed a strong correlation with measured EC (r = 0.68) and ML-predicted soil EC (r = 0.78), both being significant at 1% level of significance. The index was effective in classifying HRS images into six distinct salinity classes. We also assessed the feasibility of applying the proposed salinity index for future hyperspectral missions through the simulation of various spectral-spatial resampling scenarios and estimated the optimal spectral and spatial resolution for salinity prediction. The hyperspectral salinity index can be directly estimated from HRS data without the need for time-consuming and expensive field samplings and used as a proxy to evaluate soil salinity status under field conditions." @default.
- W4378448432 created "2023-05-27" @default.
- W4378448432 creator A5029215958 @default.
- W4378448432 creator A5067003886 @default.
- W4378448432 creator A5077442056 @default.
- W4378448432 creator A5085706437 @default.
- W4378448432 creator A5090796362 @default.
- W4378448432 date "2023-06-01" @default.
- W4378448432 modified "2023-10-16" @default.
- W4378448432 title "A novel method for detecting soil salinity using AVIRIS-NG imaging spectroscopy and ensemble machine learning" @default.
- W4378448432 cites W1590408648 @default.
- W4378448432 cites W1656144460 @default.
- W4378448432 cites W180166045 @default.
- W4378448432 cites W1964802579 @default.
- W4378448432 cites W1971622286 @default.
- W4378448432 cites W1979204143 @default.
- W4378448432 cites W1983000226 @default.
- W4378448432 cites W1984638002 @default.
- W4378448432 cites W1985195612 @default.
- W4378448432 cites W1985518702 @default.
- W4378448432 cites W1986530877 @default.
- W4378448432 cites W1992018127 @default.
- W4378448432 cites W1995341919 @default.
- W4378448432 cites W1995875735 @default.
- W4378448432 cites W1999967839 @default.
- W4378448432 cites W2002660867 @default.
- W4378448432 cites W2007394994 @default.
- W4378448432 cites W2008102716 @default.
- W4378448432 cites W2015216759 @default.
- W4378448432 cites W2018194343 @default.
- W4378448432 cites W2019038438 @default.
- W4378448432 cites W2020456298 @default.
- W4378448432 cites W2024118693 @default.
- W4378448432 cites W2025228526 @default.
- W4378448432 cites W2025734775 @default.
- W4378448432 cites W2037134175 @default.
- W4378448432 cites W2043272923 @default.
- W4378448432 cites W2043694791 @default.
- W4378448432 cites W2044806093 @default.
- W4378448432 cites W2049564683 @default.
- W4378448432 cites W2054325787 @default.
- W4378448432 cites W2056774953 @default.
- W4378448432 cites W2062565903 @default.
- W4378448432 cites W2074964653 @default.
- W4378448432 cites W2081968183 @default.
- W4378448432 cites W2083955053 @default.
- W4378448432 cites W2096357585 @default.
- W4378448432 cites W2104487864 @default.
- W4378448432 cites W2106301770 @default.
- W4378448432 cites W2106860166 @default.
- W4378448432 cites W2118813873 @default.
- W4378448432 cites W2124873064 @default.
- W4378448432 cites W2157209451 @default.
- W4378448432 cites W2171516091 @default.
- W4378448432 cites W2192080354 @default.
- W4378448432 cites W2196579671 @default.
- W4378448432 cites W2339421059 @default.
- W4378448432 cites W2530722056 @default.
- W4378448432 cites W2559914797 @default.
- W4378448432 cites W2595467185 @default.
- W4378448432 cites W2789224430 @default.
- W4378448432 cites W2793957901 @default.
- W4378448432 cites W28412257 @default.
- W4378448432 cites W2891975230 @default.
- W4378448432 cites W2892249983 @default.
- W4378448432 cites W2910835070 @default.
- W4378448432 cites W2911964244 @default.
- W4378448432 cites W2912134025 @default.
- W4378448432 cites W2914801588 @default.
- W4378448432 cites W2934977212 @default.
- W4378448432 cites W2936689178 @default.
- W4378448432 cites W2955088454 @default.
- W4378448432 cites W2973026621 @default.
- W4378448432 cites W2998503064 @default.
- W4378448432 cites W3020040236 @default.
- W4378448432 cites W3033945624 @default.
- W4378448432 cites W3042598040 @default.
- W4378448432 cites W3044383849 @default.
- W4378448432 cites W3096573182 @default.
- W4378448432 cites W3098278632 @default.
- W4378448432 cites W3120530969 @default.
- W4378448432 cites W3133459270 @default.
- W4378448432 cites W3153963714 @default.
- W4378448432 cites W4229977739 @default.
- W4378448432 cites W4233056867 @default.
- W4378448432 cites W4295408804 @default.
- W4378448432 cites W4313135875 @default.
- W4378448432 cites W4317214072 @default.
- W4378448432 doi "https://doi.org/10.1016/j.isprsjprs.2023.04.018" @default.
- W4378448432 hasPublicationYear "2023" @default.
- W4378448432 type Work @default.
- W4378448432 citedByCount "2" @default.
- W4378448432 countsByYear W43784484322023 @default.
- W4378448432 crossrefType "journal-article" @default.
- W4378448432 hasAuthorship W4378448432A5029215958 @default.
- W4378448432 hasAuthorship W4378448432A5067003886 @default.
- W4378448432 hasAuthorship W4378448432A5077442056 @default.
- W4378448432 hasAuthorship W4378448432A5085706437 @default.