Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378468644> ?p ?o ?g. }
- W4378468644 abstract "Background Patients with comorbid schizophrenia, depression, drug use, and multiple psychiatric diagnoses have a greater risk of carotid revascularization following stroke. The gut microbiome (GM) plays a crucial role in the attack of mental illness and IS, which may become an index for the diagnosis of IS. A genomic study of the genetic commonalities between SC and IS, as well as its mediated pathways and immune infiltration, will be conducted to determine how schizophrenia contributes to the high prevalence of IS. According to our study, this could be an indicator of ischemic stroke development. Methods We selected two datasets of IS from the Gene Expression Omnibus (GEO), one for training and the other for the verification group. Five genes related to mental disorders and GM were extracted from Gene cards and other databases. Linear models for microarray data (Limma) analysis was utilized to identify differentially expressed genes (DEGs) and perform functional enrichment analysis. It was also used to conduct machine learning exercises such as random forest and regression to identify the best candidate for immune-related central genes. Protein–protein interaction (PPI) network and artificial neural network (ANN) were established for verification. The receiver operating characteristic (ROC) curve was drawn for the diagnosis of IS, and the diagnostic model was verified by qRT-PCR. Further immune cell infiltration analysis was performed to study the IS immune cell imbalance. We also performed consensus clustering (CC) to analyze the expression of candidate models under different subtypes. Finally, miRNA, transcription factors (TFs), and drugs related to candidate genes were collected through the Network analyst online platform. Results Through comprehensive analysis, a diagnostic prediction model with good effect was obtained. Both the training group (AUC 0.82, CI 0.93–0.71) and the verification group (AUC 0.81, CI 0.90–0.72) had a good phenotype in the qRT-PCR test. And in verification group 2 we validated between the two groups with and without carotid-related ischemic cerebrovascular events (AUC 0.87, CI 1–0.64). Furthermore, we investigated cytokines in both GSEA and immune infiltration and verified cytokine-related responses by flow cytometry, particularly IL-6, which played an important role in IS occurrence and progression. Therefore, we speculate that mental illness may affect the development of IS in B cells and IL-6 in T cells. MiRNA (hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p) and TFs (CREB1, FOXL1), which may be related to IS, were obtained. Conclusion Through comprehensive analysis, a diagnostic prediction model with good effect was obtained. Both the training group (AUC 0.82, CI 0.93–0.71) and the verification group (AUC 0.81, CI 0.90–0.72) had a good phenotype in the qRT-PCR test. And in verification group 2 we validated between the two groups with and without carotid-related ischemic cerebrovascular events (AUC 0.87, CI 1–0.64). MiRNA (hsa-mir-129-2-3p, has-mir-335-5p, and has-mir-16-5p) and TFs (CREB1, FOXL1), which may be related to IS, were obtained." @default.
- W4378468644 created "2023-05-27" @default.
- W4378468644 creator A5013438405 @default.
- W4378468644 creator A5022536844 @default.
- W4378468644 creator A5057439637 @default.
- W4378468644 creator A5062992913 @default.
- W4378468644 creator A5087378677 @default.
- W4378468644 date "2023-05-26" @default.
- W4378468644 modified "2023-10-14" @default.
- W4378468644 title "Predictive model, miRNA-TF network, related subgroup identification and drug prediction of ischemic stroke complicated with mental disorders based on genes related to gut microbiome" @default.
- W4378468644 cites W1972784239 @default.
- W4378468644 cites W2006617902 @default.
- W4378468644 cites W2010457001 @default.
- W4378468644 cites W2035618305 @default.
- W4378468644 cites W2088478022 @default.
- W4378468644 cites W2101746265 @default.
- W4378468644 cites W2107665951 @default.
- W4378468644 cites W2115462905 @default.
- W4378468644 cites W2118258530 @default.
- W4378468644 cites W2130410032 @default.
- W4378468644 cites W2152601292 @default.
- W4378468644 cites W2159707944 @default.
- W4378468644 cites W2167803347 @default.
- W4378468644 cites W2170134016 @default.
- W4378468644 cites W2299896901 @default.
- W4378468644 cites W2330162035 @default.
- W4378468644 cites W2332044667 @default.
- W4378468644 cites W2767891136 @default.
- W4378468644 cites W2788996231 @default.
- W4378468644 cites W2797431083 @default.
- W4378468644 cites W2802083810 @default.
- W4378468644 cites W2809000676 @default.
- W4378468644 cites W2885307904 @default.
- W4378468644 cites W2898277486 @default.
- W4378468644 cites W2912988171 @default.
- W4378468644 cites W2935024989 @default.
- W4378468644 cites W2943580204 @default.
- W4378468644 cites W2969829464 @default.
- W4378468644 cites W2996012059 @default.
- W4378468644 cites W3035985418 @default.
- W4378468644 cites W3090879627 @default.
- W4378468644 cites W3096439433 @default.
- W4378468644 cites W3123562618 @default.
- W4378468644 cites W3165714996 @default.
- W4378468644 cites W3195693521 @default.
- W4378468644 cites W3213988304 @default.
- W4378468644 cites W4200435779 @default.
- W4378468644 cites W4210574380 @default.
- W4378468644 cites W4214917102 @default.
- W4378468644 cites W4223888789 @default.
- W4378468644 cites W4280582569 @default.
- W4378468644 cites W4284885053 @default.
- W4378468644 cites W4292822827 @default.
- W4378468644 cites W4297458751 @default.
- W4378468644 cites W4310078995 @default.
- W4378468644 cites W4320922421 @default.
- W4378468644 cites W4366083479 @default.
- W4378468644 doi "https://doi.org/10.3389/fneur.2023.1189746" @default.
- W4378468644 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37305753" @default.
- W4378468644 hasPublicationYear "2023" @default.
- W4378468644 type Work @default.
- W4378468644 citedByCount "1" @default.
- W4378468644 countsByYear W43784686442023 @default.
- W4378468644 crossrefType "journal-article" @default.
- W4378468644 hasAuthorship W4378468644A5013438405 @default.
- W4378468644 hasAuthorship W4378468644A5022536844 @default.
- W4378468644 hasAuthorship W4378468644A5057439637 @default.
- W4378468644 hasAuthorship W4378468644A5062992913 @default.
- W4378468644 hasAuthorship W4378468644A5087378677 @default.
- W4378468644 hasBestOaLocation W43784686441 @default.
- W4378468644 hasConcept C104317684 @default.
- W4378468644 hasConcept C119857082 @default.
- W4378468644 hasConcept C126322002 @default.
- W4378468644 hasConcept C142724271 @default.
- W4378468644 hasConcept C169258074 @default.
- W4378468644 hasConcept C41008148 @default.
- W4378468644 hasConcept C534262118 @default.
- W4378468644 hasConcept C54355233 @default.
- W4378468644 hasConcept C58471807 @default.
- W4378468644 hasConcept C60644358 @default.
- W4378468644 hasConcept C69991583 @default.
- W4378468644 hasConcept C70721500 @default.
- W4378468644 hasConcept C71924100 @default.
- W4378468644 hasConcept C86803240 @default.
- W4378468644 hasConceptScore W4378468644C104317684 @default.
- W4378468644 hasConceptScore W4378468644C119857082 @default.
- W4378468644 hasConceptScore W4378468644C126322002 @default.
- W4378468644 hasConceptScore W4378468644C142724271 @default.
- W4378468644 hasConceptScore W4378468644C169258074 @default.
- W4378468644 hasConceptScore W4378468644C41008148 @default.
- W4378468644 hasConceptScore W4378468644C534262118 @default.
- W4378468644 hasConceptScore W4378468644C54355233 @default.
- W4378468644 hasConceptScore W4378468644C58471807 @default.
- W4378468644 hasConceptScore W4378468644C60644358 @default.
- W4378468644 hasConceptScore W4378468644C69991583 @default.
- W4378468644 hasConceptScore W4378468644C70721500 @default.
- W4378468644 hasConceptScore W4378468644C71924100 @default.
- W4378468644 hasConceptScore W4378468644C86803240 @default.
- W4378468644 hasLocation W43784686441 @default.
- W4378468644 hasLocation W43784686442 @default.