Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378472893> ?p ?o ?g. }
- W4378472893 abstract "Abstract The adverse effect of air pollution has always been a problem for human health. The presence of a high level of air pollutants can cause severe illnesses such as emphysema, chronic obstructive pulmonary disease (COPD), or asthma. Air quality prediction helps us to undertake practical action plans for controlling air pollution. The Air Quality Index (AQI) reflects the degree of concentration of pollutants in a locality. The average AQI was calculated for the various cities in China to understand the annual trends. Furthermore, the air quality index has been predicted for ten major cities across China using five different deep learning techniques, namely, Recurrent Neural Network (RNN), Bidirectional Gated Recurrent unit (Bi-GRU), Bidirectional Long Short-Term Memory (BiLSTM), Convolutional Neural Network BiLSTM (CNN-BiLSTM), and Convolutional BiLSTM (Conv1D-BiLSTM). The performance of these models has been compared with a machine learning model, eXtreme Gradient Boosting (XGBoost) to discover the most efficient deep learning model. The results suggest that the machine learning model, XGBoost, outperforms the deep learning models. While Conv1D-BiLSTM and CNN-BiLSTM perform well among the deep learning models in the estimation of the air quality index (AQI), RNN and Bi-GRU are the least performing ones. Thus, both XGBoost and neural network models are capable of capturing the non-linearity present in the dataset with reliable accuracy." @default.
- W4378472893 created "2023-05-27" @default.
- W4378472893 creator A5010044286 @default.
- W4378472893 creator A5034524889 @default.
- W4378472893 creator A5069463141 @default.
- W4378472893 date "2023-05-26" @default.
- W4378472893 modified "2023-10-05" @default.
- W4378472893 title "Comparison of machine learning and deep learning techniques for the prediction of air pollution: a case study from China" @default.
- W4378472893 cites W1649411538 @default.
- W4378472893 cites W1967333634 @default.
- W4378472893 cites W2015046319 @default.
- W4378472893 cites W2102567523 @default.
- W4378472893 cites W2337803771 @default.
- W4378472893 cites W2553839055 @default.
- W4378472893 cites W2554097689 @default.
- W4378472893 cites W2570322979 @default.
- W4378472893 cites W2611205254 @default.
- W4378472893 cites W2754663885 @default.
- W4378472893 cites W2760506659 @default.
- W4378472893 cites W2765723642 @default.
- W4378472893 cites W2795055853 @default.
- W4378472893 cites W2796178159 @default.
- W4378472893 cites W2803892188 @default.
- W4378472893 cites W2805541293 @default.
- W4378472893 cites W2846868212 @default.
- W4378472893 cites W2890733607 @default.
- W4378472893 cites W2896706280 @default.
- W4378472893 cites W2898461917 @default.
- W4378472893 cites W2899742462 @default.
- W4378472893 cites W2901859786 @default.
- W4378472893 cites W2907910906 @default.
- W4378472893 cites W2911478139 @default.
- W4378472893 cites W2921781788 @default.
- W4378472893 cites W2965087576 @default.
- W4378472893 cites W2979511271 @default.
- W4378472893 cites W2982277720 @default.
- W4378472893 cites W2991648381 @default.
- W4378472893 cites W3012957873 @default.
- W4378472893 cites W3021414116 @default.
- W4378472893 cites W3033174227 @default.
- W4378472893 cites W3044205498 @default.
- W4378472893 cites W3080185158 @default.
- W4378472893 cites W3088021634 @default.
- W4378472893 cites W3102476541 @default.
- W4378472893 cites W3110420963 @default.
- W4378472893 cites W3164152554 @default.
- W4378472893 cites W4298616227 @default.
- W4378472893 cites W845424685 @default.
- W4378472893 cites W956374238 @default.
- W4378472893 doi "https://doi.org/10.1007/s44273-023-00005-w" @default.
- W4378472893 hasPublicationYear "2023" @default.
- W4378472893 type Work @default.
- W4378472893 citedByCount "2" @default.
- W4378472893 countsByYear W43784728932023 @default.
- W4378472893 crossrefType "journal-article" @default.
- W4378472893 hasAuthorship W4378472893A5010044286 @default.
- W4378472893 hasAuthorship W4378472893A5034524889 @default.
- W4378472893 hasAuthorship W4378472893A5069463141 @default.
- W4378472893 hasBestOaLocation W43784728931 @default.
- W4378472893 hasConcept C108583219 @default.
- W4378472893 hasConcept C119857082 @default.
- W4378472893 hasConcept C126314574 @default.
- W4378472893 hasConcept C147168706 @default.
- W4378472893 hasConcept C153294291 @default.
- W4378472893 hasConcept C154945302 @default.
- W4378472893 hasConcept C18903297 @default.
- W4378472893 hasConcept C205649164 @default.
- W4378472893 hasConcept C41008148 @default.
- W4378472893 hasConcept C50644808 @default.
- W4378472893 hasConcept C559116025 @default.
- W4378472893 hasConcept C81363708 @default.
- W4378472893 hasConcept C86803240 @default.
- W4378472893 hasConceptScore W4378472893C108583219 @default.
- W4378472893 hasConceptScore W4378472893C119857082 @default.
- W4378472893 hasConceptScore W4378472893C126314574 @default.
- W4378472893 hasConceptScore W4378472893C147168706 @default.
- W4378472893 hasConceptScore W4378472893C153294291 @default.
- W4378472893 hasConceptScore W4378472893C154945302 @default.
- W4378472893 hasConceptScore W4378472893C18903297 @default.
- W4378472893 hasConceptScore W4378472893C205649164 @default.
- W4378472893 hasConceptScore W4378472893C41008148 @default.
- W4378472893 hasConceptScore W4378472893C50644808 @default.
- W4378472893 hasConceptScore W4378472893C559116025 @default.
- W4378472893 hasConceptScore W4378472893C81363708 @default.
- W4378472893 hasConceptScore W4378472893C86803240 @default.
- W4378472893 hasIssue "1" @default.
- W4378472893 hasLocation W43784728931 @default.
- W4378472893 hasOpenAccess W4378472893 @default.
- W4378472893 hasPrimaryLocation W43784728931 @default.
- W4378472893 hasRelatedWork W2731899572 @default.
- W4378472893 hasRelatedWork W2999805992 @default.
- W4378472893 hasRelatedWork W3116150086 @default.
- W4378472893 hasRelatedWork W3133861977 @default.
- W4378472893 hasRelatedWork W4200173597 @default.
- W4378472893 hasRelatedWork W4223943233 @default.
- W4378472893 hasRelatedWork W4291897433 @default.
- W4378472893 hasRelatedWork W4312417841 @default.
- W4378472893 hasRelatedWork W4321369474 @default.
- W4378472893 hasRelatedWork W4380075502 @default.
- W4378472893 hasVolume "17" @default.