Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378515572> ?p ?o ?g. }
- W4378515572 endingPage "941" @default.
- W4378515572 startingPage "932" @default.
- W4378515572 abstract "Breast cancer survivors often experience recurrence or a second primary cancer. We developed an automated approach to predict the occurrence of any second breast cancer (SBC) using patient-level data and explored the generalizability of the models with an external validation data source. Breast cancer patients from the cancer registry of Zurich, Zug, Schaffhausen, Schwyz (N = 3213; training dataset) and the cancer registry of Ticino (N = 1073; external validation dataset), diagnosed between 2010 and 2018, were used for model training and validation, respectively. Machine learning (ML) methods, namely a feed-forward neural network (ANN), logistic regression, and extreme gradient boosting (XGB) were employed for classification. The best-performing model was selected based on the receiver operating characteristic (ROC) curve. Key characteristics contributing to a high SBC risk were identified. SBC was diagnosed in 6% of all cases. The most important features for SBC prediction were age at incidence, year of birth, stage, and extent of the pathological primary tumor. The ANN model had the highest area under the ROC curve with 0.78 (95% confidence interval [CI] 0.750.82) in the training data and 0.70 (95% CI 0.61-0.79) in the external validation data. Investigating the generalizability of different ML algorithms, we found that the ANN generalized better than the other models on the external validation data. This research is a first step towards the development of an automated tool that could assist clinicians in the identification of women at high risk of developing an SBC and potentially preventing it." @default.
- W4378515572 created "2023-05-28" @default.
- W4378515572 creator A5004913069 @default.
- W4378515572 creator A5016099739 @default.
- W4378515572 creator A5027659214 @default.
- W4378515572 creator A5027955098 @default.
- W4378515572 creator A5039029498 @default.
- W4378515572 creator A5039250520 @default.
- W4378515572 creator A5051251761 @default.
- W4378515572 creator A5078500789 @default.
- W4378515572 date "2023-05-27" @default.
- W4378515572 modified "2023-09-25" @default.
- W4378515572 title "Predicting second breast cancer among women with primary breast cancer using machine learning algorithms, a population‐based observational study" @default.
- W4378515572 cites W1513618424 @default.
- W4378515572 cites W2072212319 @default.
- W4378515572 cites W2098945202 @default.
- W4378515572 cites W2111547563 @default.
- W4378515572 cites W2189368561 @default.
- W4378515572 cites W2279220517 @default.
- W4378515572 cites W2328176404 @default.
- W4378515572 cites W2530103281 @default.
- W4378515572 cites W2548000614 @default.
- W4378515572 cites W2617595617 @default.
- W4378515572 cites W2790953907 @default.
- W4378515572 cites W2796292692 @default.
- W4378515572 cites W2807826216 @default.
- W4378515572 cites W2999813004 @default.
- W4378515572 cites W3034145398 @default.
- W4378515572 cites W3092612605 @default.
- W4378515572 cites W3093105734 @default.
- W4378515572 cites W3106102469 @default.
- W4378515572 cites W3111509279 @default.
- W4378515572 cites W3127861532 @default.
- W4378515572 cites W3130848728 @default.
- W4378515572 cites W4211123279 @default.
- W4378515572 cites W429766147 @default.
- W4378515572 doi "https://doi.org/10.1002/ijc.34568" @default.
- W4378515572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37243372" @default.
- W4378515572 hasPublicationYear "2023" @default.
- W4378515572 type Work @default.
- W4378515572 citedByCount "0" @default.
- W4378515572 crossrefType "journal-article" @default.
- W4378515572 hasAuthorship W4378515572A5004913069 @default.
- W4378515572 hasAuthorship W4378515572A5016099739 @default.
- W4378515572 hasAuthorship W4378515572A5027659214 @default.
- W4378515572 hasAuthorship W4378515572A5027955098 @default.
- W4378515572 hasAuthorship W4378515572A5039029498 @default.
- W4378515572 hasAuthorship W4378515572A5039250520 @default.
- W4378515572 hasAuthorship W4378515572A5051251761 @default.
- W4378515572 hasAuthorship W4378515572A5078500789 @default.
- W4378515572 hasBestOaLocation W43785155721 @default.
- W4378515572 hasConcept C105795698 @default.
- W4378515572 hasConcept C11413529 @default.
- W4378515572 hasConcept C119857082 @default.
- W4378515572 hasConcept C121608353 @default.
- W4378515572 hasConcept C126322002 @default.
- W4378515572 hasConcept C146357865 @default.
- W4378515572 hasConcept C151730666 @default.
- W4378515572 hasConcept C151956035 @default.
- W4378515572 hasConcept C154945302 @default.
- W4378515572 hasConcept C27158222 @default.
- W4378515572 hasConcept C2778527826 @default.
- W4378515572 hasConcept C2908647359 @default.
- W4378515572 hasConcept C33923547 @default.
- W4378515572 hasConcept C41008148 @default.
- W4378515572 hasConcept C44249647 @default.
- W4378515572 hasConcept C530470458 @default.
- W4378515572 hasConcept C58471807 @default.
- W4378515572 hasConcept C71924100 @default.
- W4378515572 hasConcept C86803240 @default.
- W4378515572 hasConcept C99454951 @default.
- W4378515572 hasConceptScore W4378515572C105795698 @default.
- W4378515572 hasConceptScore W4378515572C11413529 @default.
- W4378515572 hasConceptScore W4378515572C119857082 @default.
- W4378515572 hasConceptScore W4378515572C121608353 @default.
- W4378515572 hasConceptScore W4378515572C126322002 @default.
- W4378515572 hasConceptScore W4378515572C146357865 @default.
- W4378515572 hasConceptScore W4378515572C151730666 @default.
- W4378515572 hasConceptScore W4378515572C151956035 @default.
- W4378515572 hasConceptScore W4378515572C154945302 @default.
- W4378515572 hasConceptScore W4378515572C27158222 @default.
- W4378515572 hasConceptScore W4378515572C2778527826 @default.
- W4378515572 hasConceptScore W4378515572C2908647359 @default.
- W4378515572 hasConceptScore W4378515572C33923547 @default.
- W4378515572 hasConceptScore W4378515572C41008148 @default.
- W4378515572 hasConceptScore W4378515572C44249647 @default.
- W4378515572 hasConceptScore W4378515572C530470458 @default.
- W4378515572 hasConceptScore W4378515572C58471807 @default.
- W4378515572 hasConceptScore W4378515572C71924100 @default.
- W4378515572 hasConceptScore W4378515572C86803240 @default.
- W4378515572 hasConceptScore W4378515572C99454951 @default.
- W4378515572 hasIssue "5" @default.
- W4378515572 hasLocation W43785155721 @default.
- W4378515572 hasLocation W43785155722 @default.
- W4378515572 hasLocation W43785155723 @default.
- W4378515572 hasOpenAccess W4378515572 @default.
- W4378515572 hasPrimaryLocation W43785155721 @default.
- W4378515572 hasRelatedWork W2113427382 @default.