Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378516566> ?p ?o ?g. }
- W4378516566 endingPage "808" @default.
- W4378516566 startingPage "808" @default.
- W4378516566 abstract "to predict vestibular schwannoma (VS) response to radiosurgery by applying machine learning (ML) algorithms on radiomic features extracted from pre-treatment magnetic resonance (MR) images.patients with VS treated with radiosurgery in two Centers from 2004 to 2016 were retrospectively evaluated. Brain T1-weighted contrast-enhanced MR images were acquired before and at 24 and 36 months after treatment. Clinical and treatment data were collected contextually. Treatment responses were assessed considering the VS volume variation based on pre- and post-radiosurgery MR images at both time points. Tumors were semi-automatically segmented and radiomic features were extracted. Four ML algorithms (Random Forest, Support Vector Machine, Neural Network, and extreme Gradient Boosting) were trained and tested for treatment response (i.e., increased or non-increased tumor volume) using nested cross-validation. For training, feature selection was performed using the Least Absolute Shrinkage and Selection Operator, and the selected features were used as input to separately build the four ML classification algorithms. To overcome class imbalance during training, Synthetic Minority Oversampling Technique was used. Finally, trained models were tested on the corresponding held out set of patients to evaluate balanced accuracy, sensitivity, and specificity.108 patients treated with Cyberknife® were retrieved; an increased tumor volume was observed at 24 months in 12 patients, and at 36 months in another group of 12 patients. The Neural Network was the best predictive algorithm for response at 24 (balanced accuracy 73% ± 18%, specificity 85% ± 12%, sensitivity 60% ± 42%) and 36 months (balanced accuracy 65% ± 12%, specificity 83% ± 9%, sensitivity 47% ± 27%).radiomics may predict VS response to radiosurgery avoiding long-term follow-up as well as unnecessary treatment." @default.
- W4378516566 created "2023-05-28" @default.
- W4378516566 creator A5013103346 @default.
- W4378516566 creator A5030247639 @default.
- W4378516566 creator A5030260219 @default.
- W4378516566 creator A5033765207 @default.
- W4378516566 creator A5039110035 @default.
- W4378516566 creator A5043391719 @default.
- W4378516566 creator A5044716538 @default.
- W4378516566 creator A5046715968 @default.
- W4378516566 creator A5057468402 @default.
- W4378516566 creator A5073676087 @default.
- W4378516566 creator A5081516037 @default.
- W4378516566 date "2023-05-10" @default.
- W4378516566 modified "2023-10-13" @default.
- W4378516566 title "Development of Predictive Models for the Response of Vestibular Schwannoma Treated with Cyberknife®: A Feasibility Study Based on Radiomics and Machine Learning" @default.
- W4378516566 cites W1593463330 @default.
- W4378516566 cites W1668964147 @default.
- W4378516566 cites W2023847169 @default.
- W4378516566 cites W2026616100 @default.
- W4378516566 cites W2119848633 @default.
- W4378516566 cites W2142190873 @default.
- W4378516566 cites W2148143831 @default.
- W4378516566 cites W2160436191 @default.
- W4378516566 cites W2526748565 @default.
- W4378516566 cites W2767128594 @default.
- W4378516566 cites W2770305510 @default.
- W4378516566 cites W2791320132 @default.
- W4378516566 cites W2800108385 @default.
- W4378516566 cites W2886617888 @default.
- W4378516566 cites W2914061605 @default.
- W4378516566 cites W2938176367 @default.
- W4378516566 cites W2970929853 @default.
- W4378516566 cites W3012168796 @default.
- W4378516566 cites W3024654886 @default.
- W4378516566 cites W3034035069 @default.
- W4378516566 cites W3094736013 @default.
- W4378516566 cites W3121545811 @default.
- W4378516566 cites W3127112693 @default.
- W4378516566 cites W3172395668 @default.
- W4378516566 cites W3198308774 @default.
- W4378516566 cites W3207137289 @default.
- W4378516566 cites W4234588332 @default.
- W4378516566 cites W4319058498 @default.
- W4378516566 doi "https://doi.org/10.3390/jpm13050808" @default.
- W4378516566 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37240978" @default.
- W4378516566 hasPublicationYear "2023" @default.
- W4378516566 type Work @default.
- W4378516566 citedByCount "0" @default.
- W4378516566 crossrefType "journal-article" @default.
- W4378516566 hasAuthorship W4378516566A5013103346 @default.
- W4378516566 hasAuthorship W4378516566A5030247639 @default.
- W4378516566 hasAuthorship W4378516566A5030260219 @default.
- W4378516566 hasAuthorship W4378516566A5033765207 @default.
- W4378516566 hasAuthorship W4378516566A5039110035 @default.
- W4378516566 hasAuthorship W4378516566A5043391719 @default.
- W4378516566 hasAuthorship W4378516566A5044716538 @default.
- W4378516566 hasAuthorship W4378516566A5046715968 @default.
- W4378516566 hasAuthorship W4378516566A5057468402 @default.
- W4378516566 hasAuthorship W4378516566A5073676087 @default.
- W4378516566 hasAuthorship W4378516566A5081516037 @default.
- W4378516566 hasBestOaLocation W43785165661 @default.
- W4378516566 hasConcept C119857082 @default.
- W4378516566 hasConcept C12267149 @default.
- W4378516566 hasConcept C126838900 @default.
- W4378516566 hasConcept C143409427 @default.
- W4378516566 hasConcept C148483581 @default.
- W4378516566 hasConcept C153180895 @default.
- W4378516566 hasConcept C154945302 @default.
- W4378516566 hasConcept C169258074 @default.
- W4378516566 hasConcept C2776651944 @default.
- W4378516566 hasConcept C2778559731 @default.
- W4378516566 hasConcept C2780387249 @default.
- W4378516566 hasConcept C2781447767 @default.
- W4378516566 hasConcept C2989005 @default.
- W4378516566 hasConcept C41008148 @default.
- W4378516566 hasConcept C509974204 @default.
- W4378516566 hasConcept C71924100 @default.
- W4378516566 hasConcept C81363708 @default.
- W4378516566 hasConceptScore W4378516566C119857082 @default.
- W4378516566 hasConceptScore W4378516566C12267149 @default.
- W4378516566 hasConceptScore W4378516566C126838900 @default.
- W4378516566 hasConceptScore W4378516566C143409427 @default.
- W4378516566 hasConceptScore W4378516566C148483581 @default.
- W4378516566 hasConceptScore W4378516566C153180895 @default.
- W4378516566 hasConceptScore W4378516566C154945302 @default.
- W4378516566 hasConceptScore W4378516566C169258074 @default.
- W4378516566 hasConceptScore W4378516566C2776651944 @default.
- W4378516566 hasConceptScore W4378516566C2778559731 @default.
- W4378516566 hasConceptScore W4378516566C2780387249 @default.
- W4378516566 hasConceptScore W4378516566C2781447767 @default.
- W4378516566 hasConceptScore W4378516566C2989005 @default.
- W4378516566 hasConceptScore W4378516566C41008148 @default.
- W4378516566 hasConceptScore W4378516566C509974204 @default.
- W4378516566 hasConceptScore W4378516566C71924100 @default.
- W4378516566 hasConceptScore W4378516566C81363708 @default.
- W4378516566 hasIssue "5" @default.
- W4378516566 hasLocation W43785165661 @default.