Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378528091> ?p ?o ?g. }
- W4378528091 endingPage "2465" @default.
- W4378528091 startingPage "2465" @default.
- W4378528091 abstract "The analysis of differential equations using Lie symmetry has been proved a very robust tool. It is also a powerful technique for reducing the order and nonlinearity of differential equations. Lie symmetry of a differential equation allows a dynamic framework for the establishment of invariant solutions of initial value and boundary value problems, and for the deduction of laws of conservations. This article is aimed at applying Lie symmetry to the fractional-order coupled nonlinear complex Hirota system of partial differential equations. This system is reduced to nonlinear fractional ordinary differential equations (FODEs) by using symmetries and explicit solutions. The reduced equations are exhibited in the form of an Erdelyi–Kober fractional (E-K) operator. The series solution of the fractional-order system and its convergence is investigated. Noether’s theorem is used to devise conservation laws." @default.
- W4378528091 created "2023-05-28" @default.
- W4378528091 creator A5011788825 @default.
- W4378528091 creator A5019802157 @default.
- W4378528091 creator A5044028164 @default.
- W4378528091 creator A5052745773 @default.
- W4378528091 date "2023-05-26" @default.
- W4378528091 modified "2023-09-25" @default.
- W4378528091 title "Similarity Solution for a System of Fractional-Order Coupled Nonlinear Hirota Equations with Conservation Laws" @default.
- W4378528091 cites W1983346039 @default.
- W4378528091 cites W1985411652 @default.
- W4378528091 cites W1996113063 @default.
- W4378528091 cites W2003409216 @default.
- W4378528091 cites W2005432145 @default.
- W4378528091 cites W2026808214 @default.
- W4378528091 cites W2028032997 @default.
- W4378528091 cites W2052968997 @default.
- W4378528091 cites W2067835168 @default.
- W4378528091 cites W2069050392 @default.
- W4378528091 cites W2080816009 @default.
- W4378528091 cites W2085413857 @default.
- W4378528091 cites W2093151466 @default.
- W4378528091 cites W2095746279 @default.
- W4378528091 cites W2106739319 @default.
- W4378528091 cites W2149522752 @default.
- W4378528091 cites W2155473591 @default.
- W4378528091 cites W2188519702 @default.
- W4378528091 cites W2328452335 @default.
- W4378528091 cites W2435163385 @default.
- W4378528091 cites W2479316932 @default.
- W4378528091 cites W2519980589 @default.
- W4378528091 cites W2534104693 @default.
- W4378528091 cites W2558871885 @default.
- W4378528091 cites W2610305701 @default.
- W4378528091 cites W2759102741 @default.
- W4378528091 cites W2765221166 @default.
- W4378528091 cites W2794062217 @default.
- W4378528091 cites W2883208200 @default.
- W4378528091 cites W2884038418 @default.
- W4378528091 cites W2979531325 @default.
- W4378528091 cites W2990845931 @default.
- W4378528091 cites W3002202470 @default.
- W4378528091 cites W3003320200 @default.
- W4378528091 cites W3033679072 @default.
- W4378528091 cites W3033993216 @default.
- W4378528091 cites W3034026450 @default.
- W4378528091 cites W3098204133 @default.
- W4378528091 cites W3098432074 @default.
- W4378528091 cites W3099150807 @default.
- W4378528091 cites W3163123617 @default.
- W4378528091 cites W3193774134 @default.
- W4378528091 cites W3195296421 @default.
- W4378528091 cites W3196857675 @default.
- W4378528091 cites W3200399776 @default.
- W4378528091 cites W3200478524 @default.
- W4378528091 cites W3204364462 @default.
- W4378528091 cites W342193951 @default.
- W4378528091 cites W4205673145 @default.
- W4378528091 cites W4226021046 @default.
- W4378528091 cites W4280541642 @default.
- W4378528091 cites W4292882006 @default.
- W4378528091 cites W4361215068 @default.
- W4378528091 doi "https://doi.org/10.3390/math11112465" @default.
- W4378528091 hasPublicationYear "2023" @default.
- W4378528091 type Work @default.
- W4378528091 citedByCount "0" @default.
- W4378528091 crossrefType "journal-article" @default.
- W4378528091 hasAuthorship W4378528091A5011788825 @default.
- W4378528091 hasAuthorship W4378528091A5019802157 @default.
- W4378528091 hasAuthorship W4378528091A5044028164 @default.
- W4378528091 hasAuthorship W4378528091A5052745773 @default.
- W4378528091 hasBestOaLocation W43785280911 @default.
- W4378528091 hasConcept C121332964 @default.
- W4378528091 hasConcept C134306372 @default.
- W4378528091 hasConcept C154249771 @default.
- W4378528091 hasConcept C158622935 @default.
- W4378528091 hasConcept C17744445 @default.
- W4378528091 hasConcept C182310444 @default.
- W4378528091 hasConcept C199539241 @default.
- W4378528091 hasConcept C2524010 @default.
- W4378528091 hasConcept C28826006 @default.
- W4378528091 hasConcept C33923547 @default.
- W4378528091 hasConcept C3445786 @default.
- W4378528091 hasConcept C53469067 @default.
- W4378528091 hasConcept C62520636 @default.
- W4378528091 hasConcept C78045399 @default.
- W4378528091 hasConcept C80892491 @default.
- W4378528091 hasConcept C93779851 @default.
- W4378528091 hasConcept C96469262 @default.
- W4378528091 hasConceptScore W4378528091C121332964 @default.
- W4378528091 hasConceptScore W4378528091C134306372 @default.
- W4378528091 hasConceptScore W4378528091C154249771 @default.
- W4378528091 hasConceptScore W4378528091C158622935 @default.
- W4378528091 hasConceptScore W4378528091C17744445 @default.
- W4378528091 hasConceptScore W4378528091C182310444 @default.
- W4378528091 hasConceptScore W4378528091C199539241 @default.
- W4378528091 hasConceptScore W4378528091C2524010 @default.
- W4378528091 hasConceptScore W4378528091C28826006 @default.