Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378528113> ?p ?o ?g. }
- W4378528113 endingPage "895" @default.
- W4378528113 startingPage "895" @default.
- W4378528113 abstract "Spatially resolved sequencing technologies help us dissect how cells are organized in space. Several available computational approaches focus on the identification of spatially variable genes (SVGs), genes whose expression patterns vary in space. The detection of SVGs is analogous to the identification of differentially expressed genes and permits us to understand how genes and associated molecular processes are spatially distributed within cellular niches. However, the expression activities of SVGs fail to encode all information inherent in the spatial distribution of cells. Here, we devised a deep learning model, Spatially Informed Artificial Intelligence (SPIN-AI), to identify spatially predictive genes (SPGs), whose expression can predict how cells are organized in space. We used SPIN-AI on spatial transcriptomic data from squamous cell carcinoma (SCC) as a proof of concept. Our results demonstrate that SPGs not only recapitulate the biology of SCC but also identify genes distinct from SVGs. Moreover, we found a substantial number of ribosomal genes that were SPGs but not SVGs. Since SPGs possess the capability to predict spatial cellular organization, we reason that SPGs capture more biologically relevant information for a given cellular niche than SVGs. Thus, SPIN-AI has broad applications for detecting SPGs and uncovering which biological processes play important roles in governing cellular organization." @default.
- W4378528113 created "2023-05-28" @default.
- W4378528113 creator A5005791500 @default.
- W4378528113 creator A5008452135 @default.
- W4378528113 creator A5009111092 @default.
- W4378528113 creator A5009956558 @default.
- W4378528113 creator A5012087277 @default.
- W4378528113 creator A5025770639 @default.
- W4378528113 creator A5052134514 @default.
- W4378528113 creator A5072127156 @default.
- W4378528113 creator A5075596275 @default.
- W4378528113 creator A5077352612 @default.
- W4378528113 creator A5091096306 @default.
- W4378528113 date "2023-05-27" @default.
- W4378528113 modified "2023-10-15" @default.
- W4378528113 title "SPIN-AI: A Deep Learning Model That Identifies Spatially Predictive Genes" @default.
- W4378528113 cites W1677182931 @default.
- W4378528113 cites W1967871061 @default.
- W4378528113 cites W1984883254 @default.
- W4378528113 cites W2030017878 @default.
- W4378528113 cites W2042789810 @default.
- W4378528113 cites W2043565262 @default.
- W4378528113 cites W2053129129 @default.
- W4378528113 cites W2056032938 @default.
- W4378528113 cites W2066715151 @default.
- W4378528113 cites W2084077080 @default.
- W4378528113 cites W2163105084 @default.
- W4378528113 cites W2177551914 @default.
- W4378528113 cites W2471536144 @default.
- W4378528113 cites W2519794569 @default.
- W4378528113 cites W2585179645 @default.
- W4378528113 cites W2763051133 @default.
- W4378528113 cites W2771767991 @default.
- W4378528113 cites W2773619385 @default.
- W4378528113 cites W2789689928 @default.
- W4378528113 cites W2790675139 @default.
- W4378528113 cites W2794480084 @default.
- W4378528113 cites W2804916645 @default.
- W4378528113 cites W2884058580 @default.
- W4378528113 cites W2886347923 @default.
- W4378528113 cites W2889667237 @default.
- W4378528113 cites W2915428540 @default.
- W4378528113 cites W2915848182 @default.
- W4378528113 cites W2937443931 @default.
- W4378528113 cites W2942678593 @default.
- W4378528113 cites W2948469692 @default.
- W4378528113 cites W2953036966 @default.
- W4378528113 cites W2978551960 @default.
- W4378528113 cites W2996171578 @default.
- W4378528113 cites W3001833132 @default.
- W4378528113 cites W3021920958 @default.
- W4378528113 cites W3035327867 @default.
- W4378528113 cites W3036371598 @default.
- W4378528113 cites W3037329734 @default.
- W4378528113 cites W3043793790 @default.
- W4378528113 cites W3087138957 @default.
- W4378528113 cites W3108118546 @default.
- W4378528113 cites W3113349968 @default.
- W4378528113 cites W3137392859 @default.
- W4378528113 cites W3146817258 @default.
- W4378528113 cites W3164504131 @default.
- W4378528113 cites W3166618413 @default.
- W4378528113 cites W3171692328 @default.
- W4378528113 cites W3176034761 @default.
- W4378528113 cites W3182503854 @default.
- W4378528113 cites W3190759848 @default.
- W4378528113 cites W3191824479 @default.
- W4378528113 cites W3200707343 @default.
- W4378528113 cites W3207078712 @default.
- W4378528113 cites W3217269355 @default.
- W4378528113 cites W4200407804 @default.
- W4378528113 cites W4200508494 @default.
- W4378528113 cites W4220897949 @default.
- W4378528113 cites W4224059281 @default.
- W4378528113 cites W4226192560 @default.
- W4378528113 cites W4281618613 @default.
- W4378528113 cites W4282822597 @default.
- W4378528113 cites W4296371910 @default.
- W4378528113 cites W4313800177 @default.
- W4378528113 doi "https://doi.org/10.3390/biom13060895" @default.
- W4378528113 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37371475" @default.
- W4378528113 hasPublicationYear "2023" @default.
- W4378528113 type Work @default.
- W4378528113 citedByCount "0" @default.
- W4378528113 crossrefType "journal-article" @default.
- W4378528113 hasAuthorship W4378528113A5005791500 @default.
- W4378528113 hasAuthorship W4378528113A5008452135 @default.
- W4378528113 hasAuthorship W4378528113A5009111092 @default.
- W4378528113 hasAuthorship W4378528113A5009956558 @default.
- W4378528113 hasAuthorship W4378528113A5012087277 @default.
- W4378528113 hasAuthorship W4378528113A5025770639 @default.
- W4378528113 hasAuthorship W4378528113A5052134514 @default.
- W4378528113 hasAuthorship W4378528113A5072127156 @default.
- W4378528113 hasAuthorship W4378528113A5075596275 @default.
- W4378528113 hasAuthorship W4378528113A5077352612 @default.
- W4378528113 hasAuthorship W4378528113A5091096306 @default.
- W4378528113 hasBestOaLocation W43785281131 @default.
- W4378528113 hasConcept C104317684 @default.