Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378528130> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4378528130 endingPage "44" @default.
- W4378528130 startingPage "44" @default.
- W4378528130 abstract "Future mobile network operators and telecommunications authorities aim to provide reliable network coverage. Signal strength, normally assessed using standard drive tests over targeted areas, is an important factor strongly linked to user satisfaction. Drive tests are, however, time-consuming, expensive, and can be dangerous in hard-to-reach areas. An alternative safe method involves using drones or unmanned aerial vehicles (UAVs). The objective of this study was to use a drone to measure signal strength at discrete points a few meters above the ground and an artificial neural network (ANN) for processing the measured data and predicting signal strength at ground level. The drone was equipped with low-cost data logging equipment. The ANN was also used to classify specific ground locations in terms of signal coverage into poor, fair, good, and excellent. The data used in training and testing the ANN were collected by a measurement unit attached to a drone in different areas of Sultan Qaboos University campus in Muscat, Oman. A total of 12 locations with different topologies were scanned. The proposed method achieved an accuracy of 97% in predicting the ground level coverage based on measurements taken at higher altitudes. In addition, the performance of the ANN in predicting signal strength at ground level was evaluated using several test scenarios, achieving less than 3% mean square error (MSE). Additionally, data taken at different angles with respect to the vertical were also tested, and the prediction MSE was found to be less than approximately 3% for an angle of 68 degrees. Additionally, outdoor measurements were used to predict indoor coverage with an MSE of less than approximately 6%. Furthermore, in an attempt to find a globally accurate ANN module for the targeted area, all zones’ measurements were cross-tested on ANN modules trained for different zones. It was evaluated that, within the tested scenarios, an MSE of less than approximately 10% can be achieved with an ANN module trained on data from only one zone." @default.
- W4378528130 created "2023-05-28" @default.
- W4378528130 creator A5022161526 @default.
- W4378528130 creator A5025787932 @default.
- W4378528130 creator A5053545946 @default.
- W4378528130 creator A5054675649 @default.
- W4378528130 creator A5066028381 @default.
- W4378528130 creator A5073254607 @default.
- W4378528130 date "2023-05-26" @default.
- W4378528130 modified "2023-09-26" @default.
- W4378528130 title "Machine-Learning-Based Ground-Level Mobile Network Coverage Prediction Using UAV Measurements" @default.
- W4378528130 cites W2063411068 @default.
- W4378528130 cites W2124503759 @default.
- W4378528130 cites W2307391462 @default.
- W4378528130 cites W2503543021 @default.
- W4378528130 cites W2621151963 @default.
- W4378528130 cites W2707416895 @default.
- W4378528130 cites W2901515297 @default.
- W4378528130 cites W2911705508 @default.
- W4378528130 cites W2921100919 @default.
- W4378528130 cites W2950153290 @default.
- W4378528130 cites W3106203633 @default.
- W4378528130 cites W4289792861 @default.
- W4378528130 cites W4310145199 @default.
- W4378528130 cites W4365152293 @default.
- W4378528130 cites W3021097804 @default.
- W4378528130 doi "https://doi.org/10.3390/jsan12030044" @default.
- W4378528130 hasPublicationYear "2023" @default.
- W4378528130 type Work @default.
- W4378528130 citedByCount "0" @default.
- W4378528130 crossrefType "journal-article" @default.
- W4378528130 hasAuthorship W4378528130A5022161526 @default.
- W4378528130 hasAuthorship W4378528130A5025787932 @default.
- W4378528130 hasAuthorship W4378528130A5053545946 @default.
- W4378528130 hasAuthorship W4378528130A5054675649 @default.
- W4378528130 hasAuthorship W4378528130A5066028381 @default.
- W4378528130 hasAuthorship W4378528130A5073254607 @default.
- W4378528130 hasBestOaLocation W43785281301 @default.
- W4378528130 hasConcept C105795698 @default.
- W4378528130 hasConcept C139945424 @default.
- W4378528130 hasConcept C154945302 @default.
- W4378528130 hasConcept C16910744 @default.
- W4378528130 hasConcept C176808163 @default.
- W4378528130 hasConcept C199360897 @default.
- W4378528130 hasConcept C205649164 @default.
- W4378528130 hasConcept C2779843651 @default.
- W4378528130 hasConcept C33923547 @default.
- W4378528130 hasConcept C41008148 @default.
- W4378528130 hasConcept C44154836 @default.
- W4378528130 hasConcept C50644808 @default.
- W4378528130 hasConcept C54355233 @default.
- W4378528130 hasConcept C555944384 @default.
- W4378528130 hasConcept C59519942 @default.
- W4378528130 hasConcept C62649853 @default.
- W4378528130 hasConcept C76155785 @default.
- W4378528130 hasConcept C79403827 @default.
- W4378528130 hasConcept C86803240 @default.
- W4378528130 hasConceptScore W4378528130C105795698 @default.
- W4378528130 hasConceptScore W4378528130C139945424 @default.
- W4378528130 hasConceptScore W4378528130C154945302 @default.
- W4378528130 hasConceptScore W4378528130C16910744 @default.
- W4378528130 hasConceptScore W4378528130C176808163 @default.
- W4378528130 hasConceptScore W4378528130C199360897 @default.
- W4378528130 hasConceptScore W4378528130C205649164 @default.
- W4378528130 hasConceptScore W4378528130C2779843651 @default.
- W4378528130 hasConceptScore W4378528130C33923547 @default.
- W4378528130 hasConceptScore W4378528130C41008148 @default.
- W4378528130 hasConceptScore W4378528130C44154836 @default.
- W4378528130 hasConceptScore W4378528130C50644808 @default.
- W4378528130 hasConceptScore W4378528130C54355233 @default.
- W4378528130 hasConceptScore W4378528130C555944384 @default.
- W4378528130 hasConceptScore W4378528130C59519942 @default.
- W4378528130 hasConceptScore W4378528130C62649853 @default.
- W4378528130 hasConceptScore W4378528130C76155785 @default.
- W4378528130 hasConceptScore W4378528130C79403827 @default.
- W4378528130 hasConceptScore W4378528130C86803240 @default.
- W4378528130 hasFunder F4320322573 @default.
- W4378528130 hasIssue "3" @default.
- W4378528130 hasLocation W43785281301 @default.
- W4378528130 hasOpenAccess W4378528130 @default.
- W4378528130 hasPrimaryLocation W43785281301 @default.
- W4378528130 hasRelatedWork W1592972299 @default.
- W4378528130 hasRelatedWork W2049577800 @default.
- W4378528130 hasRelatedWork W2386387936 @default.
- W4378528130 hasRelatedWork W3101676691 @default.
- W4378528130 hasRelatedWork W3171559016 @default.
- W4378528130 hasRelatedWork W3197607112 @default.
- W4378528130 hasRelatedWork W3205432346 @default.
- W4378528130 hasRelatedWork W3210486668 @default.
- W4378528130 hasRelatedWork W4220882927 @default.
- W4378528130 hasRelatedWork W4312959403 @default.
- W4378528130 hasVolume "12" @default.
- W4378528130 isParatext "false" @default.
- W4378528130 isRetracted "false" @default.
- W4378528130 workType "article" @default.