Matches in SemOpenAlex for { <https://semopenalex.org/work/W4378528276> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4378528276 endingPage "2467" @default.
- W4378528276 startingPage "2467" @default.
- W4378528276 abstract "Advancements in machine learning have led to an increased interest in applying deep reinforcement learning techniques to investment decision-making problems. Despite this, existing approaches often rely solely on single-scaling daily data, neglecting the importance of multi-scaling information, such as weekly or monthly data, in decision-making processes. To address this limitation, a multi-scaling convolutional neural network for reinforcement learning-based stock trading, termed multi-scaling convolutional neural network SARSA (state, action, reward, state, action), is proposed. Our method utilizes a multi-scaling convolutional neural network to obtain multi-scaling features of daily and weekly financial data automatically. This involves using a convolutional neural network with several filter sizes to perform a multi-scaling extraction of temporal features. Multiple-scaling feature mining allows agents to operate over longer time scaling, identifying low stock positions on the weekly line and avoiding daily fluctuations during continuous declines. This mimics the human approach of considering information at varying temporal and spatial scaling during stock trading. We further enhance the network’s robustness by adding an average pooling layer to the backbone convolutional neural network, reducing overfitting. State, action, reward, state, action, as an on-policy reinforcement learning method, generates dynamic trading strategies that combine multi-scaling information across different time scaling, while avoiding dangerous strategies. We evaluate the effectiveness of our proposed method on four real-world datasets (Dow Jones, NASDAQ, General Electric, and AAPLE) spanning from 1 January 2007 to 31 December 2020, and demonstrate its superior profits compared to several baseline methods. In addition, we perform various comparative and ablation tests in order to demonstrate the superiority of the proposed network architecture. Through these experiments, our proposed multi-scaling module yields better results compared to the single-scaling module." @default.
- W4378528276 created "2023-05-28" @default.
- W4378528276 creator A5015270146 @default.
- W4378528276 creator A5044295393 @default.
- W4378528276 creator A5080669110 @default.
- W4378528276 creator A5082267036 @default.
- W4378528276 date "2023-05-27" @default.
- W4378528276 modified "2023-09-30" @default.
- W4378528276 title "A Multi-Scaling Reinforcement Learning Trading System Based on Multi-Scaling Convolutional Neural Networks" @default.
- W4378528276 cites W1901129140 @default.
- W4378528276 cites W2036750255 @default.
- W4378528276 cites W2061358456 @default.
- W4378528276 cites W2093630205 @default.
- W4378528276 cites W2097117768 @default.
- W4378528276 cites W2137076380 @default.
- W4378528276 cites W2153580489 @default.
- W4378528276 cites W2169015875 @default.
- W4378528276 cites W2183341477 @default.
- W4378528276 cites W2194775991 @default.
- W4378528276 cites W2570343428 @default.
- W4378528276 cites W2786348607 @default.
- W4378528276 cites W2963037989 @default.
- W4378528276 cites W2964350391 @default.
- W4378528276 cites W2989765054 @default.
- W4378528276 cites W2997395940 @default.
- W4378528276 cites W2997497843 @default.
- W4378528276 cites W3012223895 @default.
- W4378528276 cites W3012333258 @default.
- W4378528276 cites W3035275162 @default.
- W4378528276 cites W3035574064 @default.
- W4378528276 cites W3121900378 @default.
- W4378528276 cites W3125175025 @default.
- W4378528276 cites W3138503612 @default.
- W4378528276 cites W3215072286 @default.
- W4378528276 cites W4220794015 @default.
- W4378528276 cites W4225724460 @default.
- W4378528276 cites W4243641017 @default.
- W4378528276 cites W4285011703 @default.
- W4378528276 cites W4285606719 @default.
- W4378528276 cites W4292513339 @default.
- W4378528276 cites W4304776116 @default.
- W4378528276 cites W4312071200 @default.
- W4378528276 cites W4316924462 @default.
- W4378528276 cites W4353080254 @default.
- W4378528276 cites W594621870 @default.
- W4378528276 doi "https://doi.org/10.3390/math11112467" @default.
- W4378528276 hasPublicationYear "2023" @default.
- W4378528276 type Work @default.
- W4378528276 citedByCount "1" @default.
- W4378528276 countsByYear W43785282762023 @default.
- W4378528276 crossrefType "journal-article" @default.
- W4378528276 hasAuthorship W4378528276A5015270146 @default.
- W4378528276 hasAuthorship W4378528276A5044295393 @default.
- W4378528276 hasAuthorship W4378528276A5080669110 @default.
- W4378528276 hasAuthorship W4378528276A5082267036 @default.
- W4378528276 hasBestOaLocation W43785282761 @default.
- W4378528276 hasConcept C119857082 @default.
- W4378528276 hasConcept C154945302 @default.
- W4378528276 hasConcept C22019652 @default.
- W4378528276 hasConcept C2524010 @default.
- W4378528276 hasConcept C33923547 @default.
- W4378528276 hasConcept C41008148 @default.
- W4378528276 hasConcept C50644808 @default.
- W4378528276 hasConcept C70437156 @default.
- W4378528276 hasConcept C81363708 @default.
- W4378528276 hasConcept C97541855 @default.
- W4378528276 hasConcept C99844830 @default.
- W4378528276 hasConceptScore W4378528276C119857082 @default.
- W4378528276 hasConceptScore W4378528276C154945302 @default.
- W4378528276 hasConceptScore W4378528276C22019652 @default.
- W4378528276 hasConceptScore W4378528276C2524010 @default.
- W4378528276 hasConceptScore W4378528276C33923547 @default.
- W4378528276 hasConceptScore W4378528276C41008148 @default.
- W4378528276 hasConceptScore W4378528276C50644808 @default.
- W4378528276 hasConceptScore W4378528276C70437156 @default.
- W4378528276 hasConceptScore W4378528276C81363708 @default.
- W4378528276 hasConceptScore W4378528276C97541855 @default.
- W4378528276 hasConceptScore W4378528276C99844830 @default.
- W4378528276 hasIssue "11" @default.
- W4378528276 hasLocation W43785282761 @default.
- W4378528276 hasOpenAccess W4378528276 @default.
- W4378528276 hasPrimaryLocation W43785282761 @default.
- W4378528276 hasRelatedWork W2424871898 @default.
- W4378528276 hasRelatedWork W2517027266 @default.
- W4378528276 hasRelatedWork W2767651786 @default.
- W4378528276 hasRelatedWork W2989932438 @default.
- W4378528276 hasRelatedWork W3036126916 @default.
- W4378528276 hasRelatedWork W3081496756 @default.
- W4378528276 hasRelatedWork W3099765033 @default.
- W4378528276 hasRelatedWork W3177228470 @default.
- W4378528276 hasRelatedWork W4210794429 @default.
- W4378528276 hasRelatedWork W4293527381 @default.
- W4378528276 hasVolume "11" @default.
- W4378528276 isParatext "false" @default.
- W4378528276 isRetracted "false" @default.
- W4378528276 workType "article" @default.